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Supramolecular Metal-Organic and Organic Materials 

Elisabeth Rather 

ABSTRACT 

 

The rational design of functional solids based upon the development of strategies 

for controlling intermolecular interactions and structural arrangement of simple 

molecular building units, represents a salient feature in the context of supramolecular 

chemistry and crystal engineering. Consideration of chemical functionality, geometrical 

capability and knowledge of the interplay between two or more sets of supramolecular 

interactions specific of preselected chemical components will facilitate further extension 

of crystal engineering towards the construction of supramolecular materials possessing 

valuable properties. 

Calixarenes represent excellent building blocks for the design of solid-state 

architectures, in particular calix-4-arenes crystallize easily and the introduction of a wide 

range of director functions is relatively simple. For example, amphiphilic and pseudo-

amphiphilic calixarenes may be synthesized by selective functionalization at either face 

of the skeleton and a second functionality may then be introduced at the opposite face. 

Careful examination of the crystal packing of a series of calix-4-arene derivatives 

systematically modified with various alkyl chain lengths at the lower rim and selected 
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functional groups at the upper rim will be considered in the broader perspective of crystal 

engineering strategies and development of novel materials. 

Metal-organic networks are typically based upon the cross- linking of transition 

metal-based nodes by “spacer” organic ligands. Since there is an inherent control over the 

chemical nature of the components of such metal-organic structures, it is possible to 

design infinite architectures that possess well-defined topologies and contain cavities 

suitable for incorporation of guest molecules. Investigation of metal-organic networks 

based upon rigid ligands possessing two types of coordination sites (nicotinate and 

dinicotinate) and conformationally labile ligands possessing saturated fragments 

(glutarate and adipate) will be addressed in the context of topological approaches to the 

design of multi-dimensional networks with particular emphasis upon their resulting 

properties. 
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Chapter 1 

Introduction 

 

1.1. Perspectives 

1.1.1. Solid State Chemistry 

“Order from Chaos” 
K. Eric Drexler 

The organization that takes place when, from a saturated solution, randomly 

moving molecules crystallize into an ordered pattern, involves a complex array of 

interactions that assemble these molecular entities into crystalline architectures. If the 

properties of such assemblies are inherently dependant upon the molecular composition 

of the solid material, they are also affected by the crystal structure and symmetry of the 

arrangement adopted by the components upon crystal growth. This feature had been 

discovered long before the first X-ray experiments when Abbé Haüy1 observed that the 

cleavage, the property of a crystal to come apart between specific planes, is directly 

linked to the nature and arrangement of the building blocks in the crystal. Haüy’s Law of 

Rational Indices, the building block law, has led to the essent ial concept that the 

knowledge of the symmetry of a crystal prefigures the knowledge of the symmetry of its 

properties.2 The discovery of the X-ray in 1895 by W.C. Röntgen and the following 
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discovery of X-ray diffraction by Max von Laue in 1912 and its subsequent application 

by W.H. and W.L. Bragg to the determination of the crystal structure of mineral and 

inorganic substances have provided the means to unequivocally characterize the solid 

state.3 The structural determination of crystalline substances has also been of importance 

for further investigation of the solid state and its properties. In antithetic instances, the 

highly orderly arrangement of the ionic constituents of inorganic solids results from 

strong forces, while weaker interactions are involved in the cohesion of crystals purely 

composed of organic molecules. In the context of natural or synthetic molecular 

compounds, crystal structure determination has primarily focused upon the identification 

of the molecular entities themselves; however, further analysis of the crystal packing, 

arrangement of these molecules within the crystalline lattice, has rapidly afforded precise 

data on the intermolecular interactions holding them within the regular three-dimensional 

architectures in which they crystallize. 

Specific investigations on crystal nucleation processes, controlled growth and 

morphology during crystallization towards the generation of materials possessing 

properties related to the crystal properties constitute an important branch of modern solid 

state chemistry.4-18 These approaches, generally inspired from the knowledge acquired 

from natural or biomineral solid state systems with the purpose of generating the 

corresponding properties in synthetic materials, have exemplified how a thorough 

understanding of the crystallization process may lead to the ability to prepare a variety of 

products with desirable properties. On the other hand, a separate field has been developed 

based upon principles delineated by major advances in crystallography and structural 
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determination, which have provided enhanced insight into how molecules interact and 

assemble within the solid state, with the goal to design materials directly at the molecular 

level.19-25 In summary, the generation of synthetic solid state materials, which can afford 

unique optical, mechanical, magnetic or electronic properties or possess various 

polymorphs, represents an important aspect towards a wide variety of applications in 

material or pharmaceutical sciences. Owing to technological advances in both software 

and hardware, the characterization of these novel materials via crystallographic methods 

has become relatively straightforward and can afford the means to specifically study the 

arrangement of the molecular constituents and to understand how these building blocks 

are held together within the solid state. 

1.1.2. The Cambridge Structural Database, CSD 

The investigation of the solid state towards the generation of novel materials with 

useful properties can highly benefit from preceding examination of general and reliable 

trends developed by correlated relevant structures. In this perspective, the Cambridge 

Structural Database, CSD,26 constitutes a powerful database possessing exploitable 

information such as crystal symmetry, atomic coordinates, molecular geometry, 

interatomic distances and angles, concerning the crystal structures reported in the 

literature of over 290,000 organic, inorganic, organometallic, coordination and 

bioorganic compounds, which have been characterized via X-ray or neutron diffraction 

(ConQuest Version 1.5 © CCDC 2002). Accordingly, valuable information can be easily 

obtained from statistical analysis of the wide range of available data.27 In the context of 

the study of 3D arrangement of molecules within the solid state and how molecular 
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components are held together through intermolecular interactions, early reports from 

Pauling28 and Bondi29 based upon such statistical type of study, albeit they corresponded 

to the limited range of structural data available at that time, yet have provided results 

concerning the van der Waals distances that are still widely used. Later in the 1980’s and 

1990’s, structural studies by means of statistical analysis using the CSD with respect to 

intermolecular interactions sustaining the crystal lattice underlying the molecular 

arrangement in organic solids have been performed by Desiraju30-32 and Etter33 and have 

afforded significant advances in the field of solid state chemistry and crystal design. 

1.2. Supramolecular Chemistry 

1.2.1. Scope and Context 

“Supramolecular chemistry is the chemistry of the intermolecular bond, covering 
the structures and function of the entities formed by the association of two or more 
chemical species.” 

Jean-Marie Lehn 

Supramolecular chemistry,34,35 defined by Lehn as “chemistry beyond the 

molecule”, is based on intermolecular interactions between molecules that form more 

complex organized assemblies.23 The concepts delineated by this recent field of research 

have been initiated by the comprehensive work on inclusion compounds clathrates,36-39 

cyclophanes,40 crown ethers41 and cryptands42 devoted to the generation of synthetic 

receptors, hosts, which can be seen as the artificial counterparts of the binding sites in 

biomolecules. Indeed, Nature has afforded a wide range of complex and sophisticated 

examples of self-assemblies based upon non-covalent intermolecular interactions. In a 

sense, self-organization constitutes the basis of most biological assemblies. Double 
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stranded DNA perfectly exemplifies this concept since this highly complex system is 

based upon hydrogen bonding between the two sets of nucleic bases of the 

complementary helices.43,44 Countless further examples have also substantiated the 

importance of intermolecular interactions to sustain various biological systems: from 

protein folding governed by strong hydrogen bonds45 to a range of other non-covalent 

interactions including the amphiphilic self-assemblies of membranes sustained by the 

hydrophobic effect upon the polymeric region of phospholipids.46 These biochemical 

processes occurring at the molecular level have largely inspired chemists to create novel 

artificial systems,5,47-54 which offer opportunities to impact areas as diverse as material 

sciences, physics and pharmaceuticals. Such approaches have consisted in using and 

applying the knowledge acquired from specific natural systems with the purpose of 

generating the corresponding properties in novel synthetic materials55 and they have 

already lead to important innovations.56,57 

In the context of supramolecular interactions, the underlying concept of molecular 

recognition between functional groups interacting via non-covalent interactions is 

particularly relevant towards the idea of exploiting encoded molecules that assemble in a 

defined manner in the same vein as the coupling of matching biological entities provides 

specific response in living systems. In this regard, Linus Pauling has early foreseen the 

importance of complementariness between the functional groups of molecular entities, 

which, by assembling via weak interactions such as hydrogen bonds, generate specific 

function as disclosed in his volume “The Nature of the Chemical Bond”:   
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“Although the hydrogen bond is not strong it has great significance in 
determining the properties of substances. Because of its small bond energy and the small 
activation energy involved in its formation and rupture, the hydrogen bond is especially 
suited to play a part in reactions occurring at normal temperatures. It has been 
recognized that hydrogen bonds restrain protein molecules to their native configurations, 
and I believe that as the methods of structural chemistry are further applied to 
physiological problems it will be found that the significance of the hydrogen bond for 
physiology is greater than that of any other single structural feature.” 

Linus Pauling 

That molecular recognition between complementary functions is cruc ial in the 

phenomenon of specific organization between molecules has been further conceptualized 

within the field of supramolecular chemistry and has revealed to possess great 

opportunities for new generations of chemists. 

1.2.2. Supramolecular Interactions 

A thorough knowledge of the array of non-covalent interactions that sustain 

supramolecular assemblies is critical in order to acquire an understanding of the essential 

mechanisms that govern the self-organization of molecular entities. In this respect, the 

significance of studying structural patterns via the use of extensive databases has already 

been mentioned. Judicious exploitation of this information can, in turn, afford the means 

to develop strategies for controlling the self-assembly of molecular components that 

possess preselected functional groups, which can engage in specific supramolecular 

interactions: coordination bonds, dipole-dipole interactions, hydrogen bonding, p-p 

stacking or van der Waals interactions. Table 1.1 presents a non-exhaustive comparative 

overview of these different types of non-covalent interactions. 
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Table1.1. Typical supramolecular interactions and their characteristics 

Interaction type 
Energy 
(kJ/mol) 

Approximative distance range 
(Å) 

Examples 

Coordination bond  
M-L (with M = transition metal,  
L = electron donor organic ligand) 

50-200 

d(M-O,N) = 1.7 – 3.5 
Variable, dependant on 
transition metal and donor 
element 

Coordination polymers 
cis-platin 

Dipole -Dipole 5-50 Variable 
Acetone 
Nitro -derivatives 

Hydrogen bond 
A···H-D (with A =acceptor, 
D = donor) 

4-120 d(A···D) = 2.2 – 4.0 
Carboxylic acid dimer 
Nucleic bases 

p-p stacking < 50 
d(face-to-face) = 2.8 – 3.5 
d(edge-to-face) = 2.9 – 3.8 

Graphite 
Nucleic bases stacking 

van der Waals  < 5 ca. sum of van der Waal radii 
Inclusion compounds 
Saturated alkyl chains 

 

Based upon the knowledge of the interplay between potential interactions in 

addition to the consideration of accurately selected functional groups within either a 

single molecular component or multiple complementary molecules, the supramolecular 

approach represents a method of choice to generate a novel class of functional materials. 

1.2.3. Crystal Engineering 

In the context of solid state chemistry, supramolecular science provides a 

successful approach to the self-assembly of simple molecular building blocks preselected 

for their complementary geometrical and binding capabilities and can directly lead to a 

wide variety of crystalline structures sustained by intermolecular interactions. In effect, 

crystal has been described as the “supermolecule par excellence”,24,25 since its formation 

results from the cohesive arrangement of its constituents via more or less strong forces 

between these building units. Application of the principles delineated by supramolecular 

chemistry and molecular recognition has resulted in the rational design of crystalline 

architectures sustained by intermolecular interactions between complementary molecular 
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components. Accordingly, the field of crystal engineering,19,58 which involves prediction 

and control of the architecture within crystalline structures, has recently emerged.59-62 

The corresponding strategies are potentially important for designing materials with 

specific features and chemists have only recently applied the concepts of supramolecular 

synthesis and crystal engineering to generate new classes of organic solids and 

coordination polymers with a remarkable degree of success in terms of design.63-66 In 

addition, the modular aspect of these supramolecular assemblies provides a range of 

opportunities for the variation of the elemental components that can be judiciously 

selected for their potential applications.67 

In summary, the rational design of organic solids and coordination compounds 

from building units that allow the introduction of specific functionalities may offer 

valuable information concerning the interplay between the range of potential interactions 

and the relative degree of control within the resulting supramolecular architectures. 

Systematic investigation towards determining the factors that might favor the generation 

of such self-assemblies is of high interest for further development of functionalized 

supramolecular materials. In this respect, the work presented herein concerns the 

development of novel supramolecular organic and metal-organic materials based upon 

organic macrocycles and coordination networks respectively. This study will provide 

design strategies that apply to both types of systems and an understanding of the essential 

mechanisms that control the generation of crystalline structures of these classes of 

compounds. Applications of these principles will delineate our approach towards the 

construction of organic architectures and metal-organic networks possessing valuable 
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properties. 

1.3. Supramolecular Organic Materials 

1.3.1. Scope and Context 

Aiming to the construction of a class of crystalline compounds based upon 

organic building units that enable the incorporation of variable of functionalities towards 

a systematic evaluation of the factors controlling the formation of crystal structures, 

calixarene molecules constitute a particularly suitable starting material. Calixarenes are 

macrocycles resulting from the condensation, in basic conditions, of para-substituted 

phenol molecules and formaldehyde.68 In particular, calix-4-arenes consist in four 

phenolic moieties bridged in a macrocyclic system by four methylene groups connecting 

the adjacent positions of the phenol groups. They generally adopt a cone-shaped 

conformation, where all aryl are syn to one another. Such characteristic has actually 

originated the term “calixarene” for their resemblance to the Greek vase “calix crater”.69 

Calix-4-arene derivatives crystallize easily and their selective functionalization is 

relatively simple so they represent excellent building blocks for the generation of 

supramolecular solid-state architectures.70 Figure 1.1 shows the potential for modularity 

of calix-4-arenes that may be selectively functionalized at the para-positions of each aryl 

moiety, the upper rim of the cone, while a second functional group may also be appended 

to the hydroxylate sites at the lower rim of calix-4-arene molecules. 

Over a thousand of crystal structures containing calixarene molecules have been 

deposited in the CSD to date. For the most part, they involve calix-4-arenes derivatives 
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illustrating their general aptitude to crystallize. In this context, the systematic study of the 

arrangement adopted by this type of molecules within the solid state with respect to 

specified variables, substituents, conformation, etc., has been largely overlooked in the 

relevant literature; nonetheless such structural analyses71,72 can provide valuable 

information concerning the supramolecular interactions that control the self-assembly of 

these systems in order to develop an understanding of the factors inherent in such 

supramolecular control, with the goal of ultimately affording the means to generate 

materials with required properties for practical applications. 

 
Figure 1.1. Representation of a calix-4-arene molecule in the cone conformation showing the sites at 

the upper and lower rims that can sustain functional substitution 

1.3.2. Properties 

The characteristic cone conformation that can be adopted by calixarene 

derivatives qualifies them as members of a major group of macrocyclic host compounds 

in supramolecular chemistry. In this regard, their complexation with respect to a range of 

ions and small organic molecules has been widely studied.68,73-77 In particular, studies on 

the inclusion capability of calixarenes, initiated by J. Rebek and V. Böhmer, have 

revealed that appropriately functionalized calixarenes derivatives, when in presence of 

guest molecules, can self-assemble to form dimeric units, host capsules, suitable for the 



www.manaraa.com

 11 

inclusion of these small organic molecules,76,78-80 Figure 1.2. It should be noted that 

rational chemical modification of calixarene building units has subsequently led to the 

generation of much larger supramolecular hosts corresponding to the self-assembly of 

multiple calixarene derivatives based upon numerous intermolecular interactions,47,81,82 

Figure 1.3. 

Another aspect of calixarenes is that they can inherently act as amphiphilic 

species. In effect, they possess both hydrophobic and hydrophilic groups at the opposite 

calixarene rims so they are usually suitable for the formation of bilayer arrangements 

involving head-to-head and tail-to-tail interactions.75,83 For example, many bilayer 

structures have been reported for para-tert-butyl-calix-4-arenes, in which the presence of 

hydrophilic phenolic rim and hydrophobic core and upper rim has resulted in the 

antiparallel alignment of adjacent calixarene molecules,84-87 Figure 1.4. 

 
Figure 1.2. Self-assembly of two calixarenes providing host capsule for small guest molecules 
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Figure 1.3. Space filling representation of the supramolecular arrangement of calixarene complexes 

of resorcinarenes and para-sulfonatocalixarenes generating large host compounds  

 
Figure 1.4. Crystal structure of the supramolecular arrangement in bilayers of amphiphilic para-tert-

butyl-calix-4-arenes 

1.4. Supramolecular Metal-Organic Materials 

1.4.1. Scope and Context 

Metal-organic networks or coordination polymers are organic- inorganic hybrid 

infinite structures based upon coordination bonds between a transition metal and the 

heteroatom of an organic molecule called ligand or spacer. Coordination bonds involve 

the donation of electron density from the donor atom of a ligand to a metal ion.88 

Considering the large variety of possible organic ligands and coordination geometries of 

transition metals that can afford a wide range of metal-organic compounds, an 
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understanding of how complementary shapes of molecular building units can be 

exploited and the selection of appropriate nodes (metal coordination geometries) and 

spacers enable the specific synthesis of predictable networks. 

The first examples of the rational design of supramolecular architectures based 

upon the coordination between nodes and multi- functional organic ligands have afforded 

coordination polymers with predictable network architectures in the early 1990’s.60,66 

Such an approach has lead to the rapid development of controlled metal-organic network 

composition and topology, inspired in part by the concepts delineated in crystal 

engineering. Prototypical examples of infinite networks based upon the linkage between 

4-connected nodes and linear bifunctional linkers are shown in Figure 1.5. 2D square grid 

and 3D diamondoid topologies directly result from square planar and tetrahedral node 

geometries. The corresponding structures have been generated from commonly available 

building blocks transition metal ions Co(II), Ni(II), Cu(II) or Zn(II) and 4,4’-bipyridine 

and a variety of guest molecules,89-92 Figure 1.6.  

In the context of the description of metal-organic networks in terms of the 

corresponding topologies, it is important to note that both networks possess the same 

stoichiometry node: linker (1:2) so the corresponding architectures or superstructures 

exemplify the phenomenon of structural supramolecular isomerism, highly relevant for 

crystal engineering.93 In this regard, the importance to develop an understanding of the 

factors inherent in the supramolecular control of network topologies is evident. 

Accordingly, the systematic study of recurrent motifs adopted by relevant chromophores, 

coordination metal geometries and environment configurations, and specific organic 
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ligands by means of critical analysis of a broad range of known structures constitutes an 

asset towards the design of new metal-organic structures with desirable properties. 

 
Figure 1.5. Schematic representation of the 2D square grid and 3D diamondoid (hexagonal and 
cubic) networks that can be generated by linking transition metal nodes by linear bifunctional 

spacers ligands  

 
Figure 1.6. Crystal structures of the 2D [Ni(4,4’-bipyridine)2(NO3)2]n and 3D [Cu(4,4’-bipyridine)2]n 

metal-organic networks, organic and anionic guests are omitted for clarity 

1.4.2. Properties 

The modular nature of crystal engineered metal-organic networks, which can be 

generated from a diverse array of complementary building units,67,94-96 coupled with the 

structural diversity represented by the range of supramolecular isomers that can be 

generated from each set of molecular components,93,97 are of particular interest in the 

context of fine-tuning the chemical or physical properties. 
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Furthermore, the presence of channels or cavities, which are controllable in size 

by the variation in length of the organic spacer, within the supramolecular structures can 

afford porous materials. In this context, rigid linkers have been widely exploited in the 

design of network topologies corresponding to such anticipated property. Indeed, if one 

were to just focus upon linear N,N’-donor spacers, there already exist numerous 

examples of 2D66,90-92,97-113 and 3D infinite networks,89,113-120 many of which have no 

precedent in minerals. In particular, metal-organic square grids possess cavities that are 

suitable for interpenetration90-92,110-113 or enclathration66,98-103 of a range of guest 

molecules. In a sense, they have structural features that compare to both clays and 

zeolites since they are inherently lamellar109,121 and they can also be porous.94,103,113 In 3D 

networks, the presence of large pores may lead to the phenomenon of 

interpenetration,122,123 which can be overcome via the use of bulky linkers124 or the 

presence of guest molecules or ions60 in order to fill the cavities. On the other hand, 

recent results have demonstrated that interpenetrated structures can also be porous.125,126  

1.5. Supramolecular Materials: Tunable Properties towards Useful Applications  

There is current ly intense research in the nanosciences, which merge the basic 

experimental sciences towards the controlled manipulation of molecules in order to build 

nanostructured materials, as illustrated in Figure 1.7. In this context, supramolecular 

chemistry provides a straightforward method to generate a wide variety of functional 

nanoscale structures.127 
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Figure 1.7. The convergence of experimental sciences towards the field of nanosciences (adapted 

from the review “Pour la Science” 290, 2001, p.134) 

In addition to their inherent inclusion capability, qualifying them as potential 

“nanoscale containers”,128 the variety of properties of functionalized calixarenes coupled 

with their low cost and non-toxicity may allow their exploitation through multidisciplary 

areas of research as catalysts, extractants, semi-conductors materials, switchable systems 

for data storage and sensors or bioactive compounds.73,128-136 In particular, the ability of 

amphiphilic systems based upon calixarene derivatives to self-assemble in a reminiscent 

manner as phospholipids in biological membranes makes them an attractive target 

towards the construction of a wide range of materials such as sensors,137 microporous 

membranes138,139 or bio-active molecules carriers.140,141 

Nanoporous supramolecular metal-organic materials present various potential 

applications as adsorbents, sensors, catalysts or in separation and ion exchange.96,142-145 

They constitute an alternative to zeolites that is of interest for its simplicity in generation 

and functionalization. One can also find interesting advantages of these materials, which 

can possess intrinsic properties due to the presence of metal ions allowing the 
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incorporation of additional properties such as luminescence, redox behavior or 

magnetism. 

In summary, the application of supramolecular synthesis and crystal engineering 

strategies towards the generation of metal-organic and organic materials in the context of 

a multidisciplinary approach can afford “the goods: not only smart crystalline materials 

with useful properties chosen by the crystal engineer and implanted into the molecular 

building blocks”.146 



www.manaraa.com

 18 

 

 

 

Chapter 2 

Supramolecular Organic Materials based upon pseudo-amphiphilic calixarenes 

 

2.1. Introduction 

With a view to the rapid growth of both the biological73,135,136,147 and material 

science73,82,130,137,148-150 applications of calixarenes, recent advances have resulted in the 

development of simple routes to generate derivatives suitable for coupling to 

macromolecules such as DNA151 and proteins152-155 or for assembly at interfaces towards 

the production of calixarene thin films.149,156,157 In this context, amphiphilic calixarenes, 

bearing both hydrophobic and hydrophilic groups at the opposite calixarene rims, have 

been shown to be suitable for the formation of self-assembled mono- and multi- layers at 

the surface of solid supports.158,159 These films can be generated from calixarene 

derivatives through a variety of techniques.160-164 Such materials consist in multi-

dimensional supramolecular assemblies and hence their properties may vary from these 

of individual molecules in solution. In this regard, the study of the spatial arrangement 

adopted by selected amphiphilic calixarenes within the solid state is clearly relevant. 

Amphiphilic molecules or surfactants are well known for their essential roles in 

biological membranes or detergents. They are commonly defined as molecules 

possessing both hydrophilic polar functions and lipophilic moieties. Depending on their 
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molecular geometry, they are capable of self-organization into different phases such as 

bilayers, corresponding to lamellar systems, or colloidal systems including micelles and 

inverse micelles.165 Extending the limits of the definition of the nature of the polar head 

group, this study will be based upon the so-called “pseudo-amphiphilic” calix-4-arenes in 

which various alkyl groups are coupled to the phenolic oxygen atoms, introducing van 

der Waals interactions at one face, while different functionalities, not necessarily 

hydrophilic, are present at the upper rim of the calixarenes, thereby affecting the 

intermolecular interactions occurring at this face, Figure 2.1. In this context, the rational 

design of organic solids based upon the principles of self-assembly via hydrogen 

bonding, stacking interactions, hydrophobic interactions and electrostatics represents a 

salient aspect of crystal engineering. Considering the modular aspect of calixarene 

molecular building blocks, there are many opportunities for variation of the functional 

elements that can be judiciously selected for their potential in terms of intermolecular 

interactions. Examples of these interactions include face-to-face and edge-to-face 

aromatic stacking in para-H systems, van der Waals repulsions due to the steric effects of 

bulky groups such as tert-butyl and induced dipole-dipole forces in bromo-substituted 

calixarene systems. Knowledge of the interplay between two or more sets of interactions 

will facilitate further extension of crystal engineering. In this respect, systematic 

investigation of the structural features and general trends concerning the spatial 

arrangement of calixarene derivatives with respect to the specifics of the molecular 

components may reveal important towards rational application of principles delineated by 

supramolecular chemistry and crystal engineering to the design of novel supramolecular 
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architectures. 

 
Figure 2.1. Representation of the pseudo-amphiphilic calix-4-arene buildi ng block possessing alkyl 

substituents at the lower rim and variable functionalities at the upper rim 

2.2. Calixarenes Crystal Packing: a Database Review  

2.2.1. Scope and Limitations 

Calixarenes have been widely studied in solid state chemistry: at this time, 

more than 850 structures involving calix-4-arene derivatives have been deposited 

in the CSD. The examination of these crystal structures, which exclude 

resorcinarenes, homocalixarenes and other pyrole calixarenes, with regard to the 

spatial arrangement of calix-4-arenes within the solid state has afforded relevant 

information concerning the factors that can influence the crystal packing. 

Thiacalixarenes were included in this review since they revealed to adopt 

comparable trends as these of calixarene molecules. It should also be noted that 

this study was purely based upon crystalline architectures and excluded dynamic 

properties related to solution phenomena. There exist several potential variables 

that can affect the supramolecular organization of calixarenes building units. In 
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particular, chemical composition, shape, position of the functional groups and 

presence of guest or template molecules may be specifically screened. 

Considering the substantial amount of data, a primary classification based upon 

the chemical composition has revealed proportionate division between molecular and 

metal-organic structures. In effect, 53% of the data consisted in purely organic 

compounds, while the remaining 47% corresponded to metal-, alkaline- or mixte 

coordination compounds. The metal-organic structures were generally coordinated 

through the phenolic oxygen atoms at the lower rim, which may also be bridged or 

capped by one metal ion, or via specific substituents at the para-position such as 

sulfonate groups that allow coordination chemistry at these sites. The strong propensity 

of calix-4-arenes to adopt a cone or flattened cone conformation in the solid state is 

effectively exhibited in 75% of the crystal structures. The other possible conformations 

are partial cone (6.5%), 1,2-alternate (2.5%) and 1,3-alternate (16%). Figure 2.2 

illustrates the four common conformations observed in calix-4-arene macrocycles. The 

proportion between the different conformations is consistent in both classes of organic 

and metal-organic structures. Another important trait resulting from the exploitation of 

these raw data concerns the repartition according to the substituents that have been used 

to functionalize the upper rim of calix-4-arene molecules. Interestingly, the structures of 

para-tert-butyl-calix-4-arenes derivatives markedly outnumber all other derivatives for 

60% of the whole data set. This feature can be explained by the relative simplicity and 

high yield resulting from the condensation of para-tert-butylphenol and formaldehyde in 

basic conditions with respect to the use of other para-substituted phenols.68,166 The other 
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main derivatives that have been studied are para-hydrogen- and para-sulfonato-calix-4-

arenes in relative proportions of 16% and 6% respectively. However, the wide diversity 

of substituents found to functionalize the lower rim, which can also be partially 

substituted, did not allow delineating specific trends. Finally, the presence of additional 

guest or solvent molecules as part of the crystal structure corresponded to ca. 65% of the 

cases. A detailed classification of the structures and packing adopted by calix-4-arene 

derivatives deposited in the CSD can be found in the electronic supplementary data. 

Tables 2.1 and 2.2 represent simplified categorization corresponding to the most relevant 

structural motifs discussed throughout this review. 

 
Figure 2.2. Cone (a), partial cone (b), 1,2-alternate (c) and 1,3-alternate conformations adopted by 

calix-4-arenes 

In the context of this study, the available data concerning the molecular structures 

of calixarenes in the cone conformation that possess four hydrophobic para-substituents, 

hydrogen and tert-butyl, have been analyzed with respect to the influence of the lower 

rim functionality, which can induce, inter alia, hydrophilicity or hydrophobicity, over the 

spatial arrangement of these molecules in the solid state. It should be noted that the guest 

specifics have been accounted as a secondary variable. 

 

 

a     b           c          d 
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2.2.2. Crystal packing of amphiphilic calixarenes 

The model molecule of non-substituted calix-4-arene has only resulted in 19 

crystal structures essentially differing by the solvent incorporated in the crystalline 

architecture. In effect, in the vast majority of the cases, with small solvent hydrophilic 

and hydrophilic molecules, these simple building blocks have afforded a cyclic trimeric 

arrangement sustained by p-p edge-to-face aromatic interactions between the mutually 

partially included calixarene rings, Figure 2.3a. The spatial arrangement of these trimeric 

subunits in hexagonal close-packing is sustained by van der Waals interactions and 

generates two types of channels. Further study of the crystal packing and inclusion 

properties of these subunits has recently been reported by Atwood’s group.167 In the 

presence of larger guest molecules capable of hydrogen bonding, calix-4-arenes self-

assemble in tetrameric subunits resulting from guest inclusion. 

For calix-4-arenes possessing bulky substituents tert-butyl at the upper rim, the 

prevailing crystal packing consists into the formation of bilayer structures,84-87 whether 

the included hydrophobic guest is a small solvent molecule, e.g. CH3CN, or a larger 

organic molecule, e.g. tetradecane. As illustrated in Figure 2.3b, these bilayers are 

generated from the antiparallel alignment of adjacent calixarene molecules that divide the 

space in two distinct regions: a hydrophilic layer composed of the hydroxyl groups of the 

lower rims orientated towards the same direction and a hydrophobic layer formed by the 

aromatic rings and tert-butyl substituants of the calixarenes including the organic guest 

molecules.148 In only few exceptions, for 4 out of 23 structures, a different crystal 

packing was observed. The absence of included solvent has resulted in the mutual 
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inclusion of two tert-butyl substituents forming dimeric units of para-tert-butyl-calix-4-

arenes. On the other hand, the presence of highly sterically hindered guest molecules has 

resulted in the self-assembly of tetramer units similarly to the case of non-substituted 

calix-4-arenes.  

 
Figure 2.3. Dominant crystal packing observed for calix-4-arenes (a) and para-tert-butyl-calix-4-

arenes (b) 

Of special interest in the context of this review, the class of bipolar amphiphilic 

molecules, para-sulfonato-calix-4-arenes, in which the presence of two hydrophilic rims 

separated by a hydrophobic core, has been specifically studied in terms of spatial 

arrangement that is adopted by the macrocycles in the solid state in a recent review by 

Atwood and Raston.75 One consequence of their chemical composition is a strong 

propensity to form bilayer structures involving head-to-head and tail-to-tail interactions. 

Such bilayers can incorporate hydrophilic guests and the overall arrangement is generally 

controlled by strong interactions, hydrogen bonds or coordination, involving the sulfonate 

groups, the guest molecules and the phenolic groups. In this regard, many reports have 

described the inclusion of various guests83,168-170 including small biomolecules171-174 and 

their effects upon the bilayer motif. Para-sulfonato-calix-4-arenes have also been shown 

a     b 
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to induce three other significant types of crystal packing: capsules that can incorporate 

hydrophobic molecules such as crown ether175-177 and azacrown;178 or spheres and 

tubules, Figure 2.4, nanostructures resulting from the controlled self-assembly of three 

components calixarene, metal ion and organic ligand in specific stoichiometries.82 

 

Figure 2.4. Tubular self-assembly of para-sulfonato-calix-4 -arenes, hydrogen atoms, metal ions and 
organic ligands are omitted for clarity 

2.2.3. Crystal packing of pseudo-amphiphilic calixarenes 

Examination of the crystal structures of calix-4-arenes and para-tert-butyl-calix-

4-arenes that possess various functionalities at the lower rim has allowed delineating 

some general trends concerning the factors that govern the crystal packing of this class of 

macrocycles. 

First considering the calix-4-arenes with hydrogen atoms at the para positions, 

three cases can be distinguished according to the degree of substitution at the opposite 

rim. When the lower rim is tetra-substituted by organic moieties that are not bridging or 

capping this face, the calix-4-arenes primarily adopt a bilayer motif, in which a “rigid” 

region results from the head-to-head arrangement of anti-parallel calixarene aromatic 

cores pointing towards each other and a “soft” region consists in the self-assembly of the 
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various substituents that can interact via hydrogen bonding, aromatic stacking or van der 

Waals forces between the included functionalities, Figure 2.5a. When the lower rim is di-

substituted at the two opposite phenolic positions, the almost exclusive tendency of the 

calixarenes is to form head-to-head dimers held together by face-to-face p-p stacking. In 

absence of additional components capable of influencing the self-assembly within the 

crystal lattice,179 these dimeric subunits may then arrange in a herringbone-type 

organization, which affords high three dimensional packing efficiency, Figure 2.5b.  

 

 
Figure 2.5. Main crystal packing motifs observed for pseudo-amphiphilic calix-4 -arene derivatives 

that can self-assemble in bilayer (a), herringbone of dimers (b) and column (c) modes 

a                    b    
 
 
 
 
 
 
 
 
 
 
 
 
 
                         c 
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When the lower rim is tri-substituted or possesses four substituents capping this face, 

calixarenes form columnar-type crystal packing via partial inclusion of the non-

symmetrical substituent or the capped face within the upper rim of a calixarene situated 

below. These columns of consecutive included calixarenes generally alternate with 

respect to their directionality to afford efficient three-dimensional packing. It should be 

noted that this motif only occurs in absence of included guest molecule, Figure 2.5c. 

Secondly, the study of the spatial arrangement adopted by para-tert-butyl-calix-4-

arene derivatives has revealed similar trends with differences attributable to the 

introduction of a supplementary variable as the presence of bulky substituents at the 

upper rim. When the phenolic substituents induce a degree of asymmetry within the 

molecular structure of para-tert-butyl-calix-4-arenes, for example mono-substitution or 

tetra-substitution of the lower rim by three equivalent moieties and an additional distinct 

group, the columnar-type motif described above is obtained. In the remaining majority of 

the cases, the specifics of the substituents in terms of shape and functionality constitute 

the triggers of the crystalline arrangement. From a general perspective, three major 

situations can be distinguished. In the case of large substituents that possess functional 

groups susceptible to afford supramolecular interactions with each other such as 

hydrogen bonds or aromatic stacking, the bilayer-type crystal packing described above 

prevails, Figure 2.6a. The presence or absence of guest/solvent molecules does not 

essentially affect the overall supramolecular arrangement. In fact, such small additional 

components, when non- included in the macrocycles, usually lie between the bilayers; 

whereas guest inclusion may increase the width of the aromatic layer. When the lower 
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rim is functionalized with small groups, the presence of included guest molecules within 

the cavities of the calixarenes generates the formation of capsules. The spatial 

organization of these capsules can be described as an “anti-bilayer” situation where rigid 

and soft parts regularly alternate in order to optimize the packing efficiency, Figure 2.6b. 

Finally, the presence of bulky groups at the lower position of the molecules of para-tert-

butyl-calix-4-arene induces a different packing mode that is principally governed by van 

der Waals repulsion of the two sterically hindered faces of the macrocycles. The oblique 

orientation of adjacent molecules generates a herringbone pattern as illustrated in Figure 

2.6c, which offers the closest and most compact crystal packing for these characteristic 

shapes. Interestingly, this type of motif is recurrent throughout the structures of all calix-

4-arene derivatives. Notable instances are constituted by dimeric units, in particular tail-

to-tail sub-assemblies generated from strong interactions such as coordination or 

hydrogen bonds between the lower faces of two calix-4-arenes. These dimers present 

symmetrical hindered opposite faces formed by both upper rims and hence self-assemble 

in a similar manner as a single building unit that contain two opposite bulky faces. 
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Figure 2.6. Main crystal packing motifs observed for pseudo-amphiphilic para-tert-butyl-calix-4-

arene derivatives that can self-assemble in bilayer (a), capsule (b) and herringbone (c) modes 

In the context of the crystallographic study of pseudo-amphiphilic building units 

possessing lipophilic substituents, only a small number of calixarenes bearing exclusively 

alkyl chains at the lower rim have been synthesized and investigated by X-ray 

crystallography.180-183 The corresponding crystalline arrangements are essentially 

governed by the substituent particulars, nitro groups or large multi-aromatic components, 

a               b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    c 



www.manaraa.com

 30 

used to functionalize the upper rim. In the case of amphiphilic calixarenes possessing 

long alkyl chains, para-octanoyl-calixarene constitutes a rare and recent example in 

which the crystal packing is sustained by van der Waals interactions between alkyl chains 

and by the presence of a hydrophilic layer between two layers of calixarenes.184 This 

behavior in the solid state is very similar to those observed for amphiphilic molecules in 

liquid crystal phase and typical phospholipids in lyoptropic phase.185 

Finally, with regard towards the study of specific modification of the upper rim of 

pseudo-amphiphilic compounds by halogen groups and the influence of the resulting 

induced dipole over the supramolecular organization, for example in the case of 

brominated calixarenes, the extremely scarce number of these types of functionalized 

macrocycles180,186-189 has not allowed the extraction of any particular trend or preferential 

behavior of such type of halogenated calix-4-arenes. 

In summary, some general trends have been delineated concerning the different 

variables that may affect the supramolecular organization of amphiphilic and pseudo-

amphiphilic classes of calix-4-arenes. In the context of this review, several points deserve 

to be emphasized. First, the extremely large spectrum of functionalities found to modify 

the lower rim of calix-4-arene derivatives has limited this study from a thorough 

examination of the systematic variation of the potential supramolecular interactions that 

can be incorporated to this face. Second, the influence of specifically designed 

substituents for their strong tendency to generate well-known supramolecular patterns 

such as the chiral motif resulting from assembly of calix-4-arene possessing melamine 

substituents and barbituric acid derivatives190 has been considered as special cases in the 
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context of this study since these instances are not representative of the crystal packing of 

calixarene molecules. Finally, the scarcity of crystal structures containing calixarenes 

possessing more or less long alkyl chains represents an interesting opportunity towards 

the rational study of such class of pseudo-amphiphilic synthetic compounds through 

systematic variation of the hydrophobic part. Moreover, further examination of the effect 

of the modification of the upper rim by bromine substituents and their comparison with 

other frequent derivatives may reveal of interest towards the generation of 

supramolecular organic materials based upon the control over the structural motifs 

resulting from more than one type of intermolecular interactions. 

Careful examination of the crystal structures of a series of calix-4-arene 

derivatives systematically modified at the lower rim with various alkyl chain lengths, and 

successively systematic modification of the upper rim by three types of functional 

groups, hydrogen, tert-butyl and bromine, which can induce the corresponding sets of 

weak interactions, aromatic stacking, van der Waals and halogen or induced dipole 

forces, sustaining the crystal packing, will be discussed in the broader perspective of 

crystal engineering strategies and development of novel materials. 
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Table 2.1. Structural analysis of the crystal packing observed in calix-4 -arenes 

Lower Rim Substituents CSD Refcode Space Group Structural Motif 
HUVBEF P-3 
WUVKAZ P-3 
PEZBIF P63 
BALHOM P63/m 
DACMAV P63/m 
PEZBEB P63/m 
PEZWIA P63/m 
WUVKED P63/m 
WUVKON P63/m 
WUVKUT P63/m 
WUVLAA P63/m 
WUVLEE P63/m 
WUVLII P63/m 
WUVLOO P63/m 

Trimers 

NUNJUB P-1 
HAZJAT P4/nnc 

Tetramers 

4 OH 

DACLUO Pnma Bilayers 
QEKMIC P21/c Bilayers 

1OH+3OR 
WIWLOD P21/c Columns 
KEVYAL P21/c Columns 
TIWHEM P21/c 
PAWTOW R-3 
RUWGOF P21/n 
LASDEO P1121/n 
NEMTUU P-1 
WOHJEI P21/a 
YAKGIA P-1 

Dimers 2OH+2OR (Opposite Rings) 

VIRXAF P21/n Herringbone 
GODWEB P21/c Bilayers 
NUVMEW  P-1 Dimers 2OH+2OR (Opposite rings bridged) 

NUVMIA P21/a Columns 
JOYHEK P21/a 
WILNOU P-1 
RADSAQ P21/n 
NEDDUV C2/c 

Bilayers 

HILVAZ C2/c Columns 

4 OR 

HUBMEW  P-1 Herringbone 
LINLID P2/c Columns 

4 OR (Adjacent rings bridged) 
NEMMUN C2/c Bilayers 

4 OR (Opposite rings bridged) TADCOQ P21/c Dimers 
4 OR (All rings capped) HEMHUC P-1 Columns 
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Table 2.2. Structural analysis of relevant crystal packing observed in para-tBu-calix-4-arenes 

Lower Rim Substituents CSD Refcode Space Group Structural Motif 

BHPMYC P4/n 
BOCZUO P4/n 
CUPWAL P4/n 
GOKPEB P4/n 
GOKQUS P4/n 
LODNOH P4/n 
NAPCIQ P4/n 
NILCEQ P4/n 
NILCIU P4/n 
NILCOA P4/n 
VEGPIG P4/n 
ZAHMOK P4/n 
NILCAM P4/n 
QIGBAJ P-1 
BHPMYC01 P112/a 

4 OH 

NAPCEM Pc21n 

Bilayers 

FAQDUW P21/n 
3OH+1OR 

LOMGUP P-1 
Columns 

KEVXIS P21/n 
SUYXIT P-1 
QIKTEJ P-1 

Capsules 

KEQYEK P212121 Columns 
IBOKAL P-1 

2OH+2OR (Opposite Rings) 

BOWFOI P-1 
Bilayers 

WESGIK P21/a Bilayer/Herringbone 
Hybrid 

WEHJEY P-1 
ABOYAR C2/c 
QIFHOC P-1 
NECWAT C2/c 

1OH+3OR 

ZOJWEA  Pnma 

Bilayers 

PAMTIG P21/n 
RADRUJ P21/n 
JEGQOB P21/a 

Bilayers 

DAKSEN P-1 
GIYTOX P-1 

Capsules 

KEQYAG P21 

4 OR 

JOYHAG P21/c 
Herringbone 

NICDOS P-1 
3OR+1OR' 

KOCQIC Pbca 
Columns 
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2.3. Experimental 

2.3.1. Syntheses 

Two series of pseudo-amphiphilic calixarenes were synthesized. A first set of 

bromo-substituted calix-4-arenes at the para position through systematic variation of the 

chain length of the four alkylated phenolic oxygen atoms of the lower rim resulted in the 

following compounds: para-Br-tetra-O-alkyl-calix-4-arene, with alkyl = butyl, 1; pentyl, 

2; hexyl, 3; heptyl, 4; octyl, 5; nonyl, 6; decyl, 7; undecyl, 8; dodecyl, 9. The second 

series of calixarenes resulted from variation of the substituent at the upper rim while all 

phenolic oxygen atoms were alkylated by hexyl groups: (para-H)2-(para-Br)2-tetra-O-

hexyl-calix-4-arene, 10; para-H-tetra-O-hexyl-calix-4-arene, 11 and para-tBu-tetra-O-

hexyl-calix-4-arene, 12. Syntheses were achieved using appropriately modified 

procedures of syntheses described in the literature.191,192 Recrystallization of all 

compounds was achieved at room temperature via slow diffusion in mixtures of organic 

solvents selected for their ability towards solubilization of calixarene derivatives. 

2.3.2. X-ray Crystallography 

Single crystals suitable for x-ray crystallographic analysis were selected following 

examination under a microscope. Single-crystal x-ray diffraction data for compounds 1-5 

and 9-12, and all subsequent compounds described along this dissertation, were collected 

on a Bruker SMART-APEX diffractometer using Mo?a radiation (? = 0.7107 Å).  Lorentz 

and polarization corrections were applied and diffracted data for bromo derivatives and 

all metal-organic compounds presented further in this work were also corrected for 
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absorption using the SADABS v.2.02 area-detector absorption correction program 

(Siemens Industrial Automation, Inc., © 1996). The structures were solved by direct 

methods and Fourier techniques. Structure solution and refinement were based on |F|2. 

Unless specified, all non-hydrogen atoms were refined anisotropically and hydrogen 

atoms of the C-H groups were placed in geometrically calculated positions and refined 

with temperature factors 1.2 times those of their bonded atoms. All crystallographic 

calculations were conducted with the SHELXTL 6.10 program package (Bruker AXS 

Inc., © 2001). Table 2.3 reveals crystallographic data and structure refinement parameters 

of the compounds presented in this chapter. Full crystallographic data can be found in the 

electronic supplementary data. 

Compound 10 was observed to present two different crystalline phases at 200K 

and at room temperature corresponding to the structures of 10a and 10b respectively. In 

crystal structures of 1, 2, 4, 5, 11 and 12 several carbon atoms of the alkyl chains were 

disordered around 2-fold positions and each corresponding group of atoms was refined 

with two equally occupied sets of coordinates. In crystal structures of 3 and 10a the 

carbon atoms of several alkyl chains of the calixarene molecules in the asymmetric unit 

occupied several general positions and were refined with fixed site occupation factors 

(s.o.f.) for occupancies of 0.5 (0.6 and 0.4 for 4 atoms of 3) for each carbon. All non-

hydrogen atoms were refined with anisotropic displacement parameters except for several 

carbon atoms of the alkyl chains in compound 3, 5 and 10a, which were observed to 

exhibit high thermal motion. The H atoms of the C-H groups were fixed in calculated 

positions except for the H atoms of the disordered aliphatic chains in compounds 3, 4, 5 
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and 10a. The relatively high values for the residual electronic density in 5 and 10a were 

due to the non-attribution of these hydrogen atoms. Structure of 3 was badly disordered 

and presented very low proportion of significant diffraction intensities at higher Bragg 

angle so a shortage of high-angle data with significant intensity was used to determine a 

valid solution. The crystal of compound 10a, was a racemic twin as highlighted by the 

value of the Flack parameter (0.47). Although the structure was recollected for different 

crystals and resolved several times; in every case, a comparable Flack parameter was 

obtained, such results are indicative of the natural tendency of this particular compound 

with respect to crystal growth. Recrystallization of compounds 6, 7 and 8 afforded 

needle-shaped microcrystals. Due to the poor quality of these crystals, diffraction of 6-8 

was very weak and it was not possible to obtain acceptable structure solutions. However 

it was possible to determine their unit cells as means of comparison with the series 

studied herein. Furthermore, data set collected for 6 and 8 provided the possibility to 

elucidate the main elements of the crystal packing of these compounds, which was found 

to be analogous to that of 4 and 5. 
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Table 2.3. Crystallographic data for compounds 1 -5 and 9 -12 
Compound 1 2 3 4 5 
Chemical formula C44H52Br4O4 C48H60Br4O4 C52H68Br4O4 C56H76Br4O4 C60H84Br4O4 
Formula weight 964.50 1020.60 1076.70 1132.81 1188.91 
Temperature, K 200(2) 200(2) 200(2) 200(2) 100(2) 
Crystal system Triclinic Triclinic Triclinic Monoclinic Monoclinic 
Space group P-1 P-1 P-1 P2/c P2/c 
a, Å 12.2468(12) 13.0107(8) 18.018(4) 28.095(5) 27.628(2) 
b, Å 19.0095(19) 18.5940(12) 21.980(4) 16.485(3) 17.4376(15) 
c, Å 19.0772(19) 19.8009(12) 23.168(5) 18.384(4) 18.4703(16) 
a, deg 102.245(2) 101.3780(10) 113.40(3) 90 90 
ß, deg 91.880(2) 91.8250(10) 95.32(3) 98.359(4) 96.874(2) 
γ, deg 93.842(2) 94.3990(10) 109.24(3) 90 90 
V, Å3 4325.4(7) 4676.9(5) 7681(3) 8424(3) 8834.3(13) 
Z 4 4 6 6 6 
ρcalcd, g.cm-3 1.481 1.449 1.397 1.340 1.341 
µ, mm-1 3.761 3.483 3.185 2.907 2.776 
F(000) 1952 2080 3312 3504 3696 
Crystal size, mm 0.30x0.15x0.10 0.30x0.20x0.10 0.20x0.05x0.01 0.10x0.01x0.01 0.30x0.15x0.05 
θ range for data collection, deg 1.09 to 25.06 1.57 to 24.71 0.99 to 21.87 1.24 to 24.71 1.17 to 26.37 

Limiting indices 
-14<=h<=14 
-22<=k<=22 
-22<=l<=22 

-14<=h<=15 
-21<=k<=20 
-23<=l<=22 

-17<=h<=18 
-11<=k<=21 
-22<=l<=21 

-32<=h<=33 
-19<=k<=18 
-21<=l<=17 

-31<=h<=34 
-12<=k<=21 
-22<=l<=23 

Reflections collected 31517 24047 14807 40470 49331 
Unique reflections 15178 15772 13120 14361 18071 
R(int) 0.0335 0.0334 0.0252 0.1116 0.0826 
Completeness to θ, % 98.9 98.9 70.8 100 99.9 
Absorption correction SADABS SADABS SADABS SADABS SADABS 
Max. and min. transmission 1.000 and 0.825 1.000 and 0.639 1.000 and 0.795 1.000 and 0.714 1.000 and 0.618 
Data / restraints / parameters 15178 / 0 / 1032 15772 / 0 / 1037 13120 / 0 / 1633 14361 / 78 / 918 18070 / 37 / 943 
Goodness-of-fit on F2 1.021 0.992 1.056 0.962 1.002 

Final R indices [I>2sigma(I)] 
R1 = 0.0433, 
wR2 = 0.1024 

R1 = 0.0479, 
wR2 = 0.1060 

R1 = 0.0567, 
wR2 = 0.1360 

R1 = 0.0631, 
wR2 = 0.1240 

R1 = 0.0716, 
wR2 = 0.1850 

R indices (all data) 
R1 = 0.0723, 
wR2 = 0.1202 

R1 = 0.0809, 
wR2 = 0.1209 

R1 = 0.1012, 
wR2 = 0.1666 

R1 = 0.1517, 
wR2 = 0.1601 

R1 = 0.1573, 
wR2 = 0.2280 

Largest diff. peak and hole, e.Å -3 0.730 and -0.631 0.922 and -0.745 0.507 and -0.344 0.717 and -0.589 1.004 and -0.708 
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Table 2.3. (continued) 
Compound 9 10a 10b 11 12 
Chemical formula C79H122Br4O5 C52H70Br2O4 C52H70Br2O4 C52H72O4 C68H104O4 
Formula weight 1471.41 918.90 918.90 761.10 985.51 
Temperature, K 200(2) 200(2) 298(2) 200(2) 200(2) 
Crystal system Monoclinic Monoclinic Monoclinic Orthorhombic Monoclinic 
Space group P2(1)/c P2(1) P2(1)/c Pbca P2(1)/n 
a, Å a = 23.725(3) 21.973(3) 19.049(2) 19.3314(15) 19.5064(12) 
b, Å b = 15.6770(17) 16.135(2) 16.623(2) 19.2886(15) 16.9184(10) 
c, Å c = 21.102(2) 27.137(4) 16.059(2) 50.653(4) 38.139(2) 
a, deg 90 90 90 90 90 
ß, deg 103.075(2) 99.472(2) 97.898(3) 90 92.6920(10) 
γ, deg 90 90 90 90 90 
V, Å3 7645.3(15) 9490(2) 5036.9(11) 18887(3) 12572.5(13) 
Z 4 8 4 16 8 
ρcalcd, g.cm-3 1.278 1.286 1.212 1.071 1.041 
µ, mm-1 2.153 1.751 1.650 0.065 0.062 
F(000) 3104 3872 1936 6656 4352 
Crystal size, mm 0.50x0.10x0.05 0.30x0.10x0.02 0.20x0.10x0.05 0.60x0.30x0.10 0.30x0.25x0.05 
θ range for data collection, deg 1.63 to 27.10 0.94 to 25.11 1.63 to 24.71 1.54 to 24.04 1.07 to 26.43 

Limiting indices 
-30<=h<=30 
-20<=k<=12 
-25<=l<=27 

-26<=h<=15 
-19<=k<=19 
-32<=l<=32 

-15<=h<=22 
-19<=k<=19 
-18<=l<=18 

-22<=h<=22 
-22<=k<=21 
-44<=l<=58 

-24<=h<=24 
-18<=k<=21 
-47<=l<=39 

Reflections collected 45337 50439 24921 86022 71190 
Unique reflections 16842 33327 8588 14864 25748 
R(int) 0.0884 0.0721 0.1125 0.0734 0.1179 
Completeness to θ, % 99.9 99.2 99.9 99.8 99.4 
Absorption correction SADABS SADABS SADABS None None 
Max. and min. transmission 1.000 and 0.676 1.000 and 0.735 1.000 and 0.903 N/A N/A 
Data / restraints / parameters 16842 / 0 / 799 33327 / 161 / 1914 8588 / 57 / 477 14864 / 0 / 1027 25748 / 3 / 1347 
Goodness-of-fit on F2 0.940 1.022 0.859 1.023 0.955 

Final R indices [I>2sigma(I)] 
R1 = 0.0557, 
wR2 = 0.1094 

R1 = 0.1085,  
wR2 = 0.2585 

R1 = 0.0700, 
wR2 = 0.1676 

R1 = 0.0810, 
wR2 = 0.1819 

R1 = 0.0823, 
wR2 = 0.1725 

R indices (all data) 
R1 = 0.1354, 
wR2 = 0.1360 

R1 = 0.2061, 
wR2 = 0.3248 

R1 = 0.2578, 
wR2 = 0.2498 

R1 = 0.1385, 
wR2 = 0.2129 

R1 = 0.2208, 
wR2 = 0.2287 

Absolute structure parameter N/A 0.466(16) N/A N/A N/A 
Largest diff. peak and hole, e.Å -3 0.778 and -0.589 1.580 and -1.240 0.369 and -0.253 0.361 and -0.194 0.513 and -0.399 
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2.4. Results and Discussion 

2.4.1. Influence upon the crystal packing through variation at the lower rim 

The first part of this study consists in the systematic evaluation of the effect of the 

substitution by increasing length chains of alkyl groups, CnH2n+1 (n = 4-12), at the lower 

rim on the crystal structures of a series of pseudo-amphiphilic tetrabrominated calix-4-

arenes. Careful examination of the crystal structures with particular attention to the 

overall arrangement of the calixarene molecules reveals a clear tendency towards to 

formation of bilayer-type packing while the chain length increases. 

In all compounds, the macrocycles exhibit a C2 symmetrical, flattened-cone, 

conformation. The distortions in the orientation of the aryl units corresponding to the 

symmetry reduction with respect to the four-fold symmetry of the ideal cone 

conformation are attributed to repulsive van der Waals contacts between adjacent O-alkyl 

groups at the lower rim of the calixarene molecules.180,193 The ring inclination angles and 

corresponding distances between opposite aryl groups are presented in Figure 2.7 and 

Table 2.4. These values are consistent with the corresponding values of flattened 

conformations observed para-H-tetra-O-alkyl-calix-4-arene derivatives, when the alkyl 

chain possesses more than 3 carbon atoms.180 It should be noted that the relatively high 

inclination of the two opposite closest rims in tetrabrominated calixarene derivatives is 

also favorized by halogen-halogen interactions, with d(Br···Br) in a range of 3.85 to 3.95 

Å and corresponding angles ?(C-Br···Br) = 89.5-96.9° and 97.3-103.5° for compounds 1-

5. 
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Figure 2.7. Representation of the flattened cone conformation observed in para-bromo-calix-4-arenes 

and designation of the distances and angles used to describe their geometry 

Table 2.4. Ring inclination angles and corresponding distances between opposite aryl groups in the 
crystal structures of compounds 1-5 and 9 

 

The structures of 1 and 2 present analogous crystal packing where the calixarene 

organization within the solid-state affords higher packing efficiency relative to the other 

compounds presented herein as illustrated by the corresponding densities, Table 2.3. 

Figure 2.8 shows that 1 and 2 form two types of layers repeating down [010]. Each layer 

consists in the arrangement of calixarene molecules in the typical herringbone pattern 

presented above. Within the layers, one of the alkyl chains of each calixarene pointing in 

the same direction is partially included in the adjacent macrocycle thus forming columns, 

Compound 
Angle 1 
(°) 

Angle 2 
(°) 

Angle 3 
(°) 

Angle 4 
(°) 

Distance 1 
(Å) 

Distance 2 
(Å) 

1 60.7 52.7 -9.78 -8.00 10.0 4.43 

2 63.1 50.3 -9.04 -7.15 10.1 4.45 

3 61.6 52.7 -14.7 -5.47 10.1 4.32 

4 54.6 48.9 -11.4 -6.55 9.85 4.36 

5 56.5 50.5 -11.9 -5.97 9.83 4.41 

9 65.1 40.6 -6.63 -4.3 9.89 4.70 
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Figure 2.9. Every two columns in the same layer possess opposite orientations related by 

inversion center and, in 1, they interact with adjacent layers via bromine-bromine 

interactions with d(Br···Br) = 3.92 Å, Figure 2.9. Considering this type of halogen-

halogen supramolecular interactions, Desiraju and Parthasarathy have demonstrated their 

attractive nature in the solid state.194 These interactions are directional and present two 

favorable geometries, when the angles formed by C1-X1···X2-C2 are noted ?1(C1-X1···X2) 

and ?2(X1···X2-C2), the two preferred geometries of halogen-halogen contacts correspond 

to ?1= ?2 (Type I) and ?1=180, ?2=90° (Type II).195 In compound 1 both angles are equal, 

?(C-Br···Br) = 69.6°, since they are related by an inversion center situated between the 

two bromine atoms. The distance between the two bromine atoms is slightly higher than 

the sum of van der Waals radii (3.70 Å)29,196 allowing the interaction between two layers 

of calixarenes across the interlayer plane. In compound 2 the presence of an additional 

methylene in the included aliphatic chain precludes further halogen interactions and 

adjacent layers essentially self-assemble via van der Waals interactions affording similar 

packing efficiency as in 1. 

 
Figure 2.8. Representation of the crystal packing of compounds 1 and 2 down [001] (a) and view of 

one layer (b) and their superimposition (c) down [010] 
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Figure 2.9. Detailed view of the interactions Br-Br between the columns of two adjacent layers 

observed in compound 1 

When the lower rim is substituted by hexyl chains, the situation differs entirely. 

The calixarene molecules in compound 3 assemble in a helical motif. Each helix results 

from hexameric motifs of calixarenes that are sustained by strong, directional bromine-

bromine interactions and aromatic edge-to-face stacking interactions. Figure 2.10. shows 

the resulting helical packing motif. In the crystal structure of 3, bromine atoms of two 

adjacent calixarenes point towards the inside of the helix and interact with distances 

d(Br···Br) of 3.57 and 3.76 Å, shorter than the sum of van der Waals radii of bromine 

atoms,29,196 with corresponding angles ?(C-Brd···Bra) = 88.12° and 88.85° and ?(C-

Bra···Brd) = 138.00° and 158.14°, where Brd is the donor and Bra the acceptor bromine. 

Halogen interactions of this type have recently been used in the perspective of crystal 

engineering195,197 but the formation of such helical architecture by self-organization of 

calixarene molecules has yet only been reported in the case of the presence of 

substituents selected for their hydrogen bonding capabilities198 and related tubular 

assemblies obtained through metal- induced self-assemly of sulfonato-calixarenes.75,82 It 

is should also be noted that few O-alkylated calixarenes199,200 and resorcinarenes201 

derivatives have been reported to exhibit helical arrangements but in all cases the alkyl 
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chains pointed towards the axis of the helix. 

 

Figure 2.10. Representation of the helical motif sustained by compound 3 and detailed view of the 
hexamer of calixarenes forming the helix, alkyl chains are omitted for clarity  

In the case of alkyl chains containing more than 6 carbon atoms functionalizing 

the lower rim, pseudo-amphiphilic calixarenes adopt a different type of crystalline 

arrangement. In particular, compounds 4 and 5 engage in a pseudo-bilayer motif, Figure 

2.11. Their structures are sustained by head-to-head and edge-to-face p-p stacking 

interactions, with distances in a range of 3.40 to 3.70 Å, and tail- to-tail van der Waals 

interactions between the alkyl chains. The crystal packing of these compounds can be 

described as the superimposition of three non-equivalent layers parallel to [100], which 

pack on top of each other and spatially generate two distinct regions, aromatic and 

aliphatic, Figure 2.12. In two of the three layers, calixarene molecules adopt a similar 

herringbone pattern as that observed in compounds 1 and 2. Every two herringbone-type 

layers possess opposite orientations. In the third layer, the pseudo-amphiphilic molecules 

exhibit an ordered bilayer motif where the alkyl chains are interdigitated within the 
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aliphatic region. Every three layer repeats to result in a pseudo-bilayer packing type, 

where the widths of the aromatic region are 7.63 and 8.00 Å and those of the aliphatic 

region are 8.86 and 9.43 Å for 4 and 5 respectively. 

 
Figure 2.11. Representation of the crystal packing of compounds 4 and 5 down [001], hydrogen 

atoms of the alkyl chains are omitted for clarity 

 
Figure 2.12. Representation of the non-equivalent layers in compounds 4 and 5 and their 

superimposition down [100] 
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In compounds 1-5, most alkyl chains were observed to possess partial structural 

disorder. Such patterns are common for the presence of conformationally flexible 

moieties. The weak diffraction intensities observed for the crystals of calixarenes 6-8, 

which possess longer alkyl substituents at the lower rim, are most likely due to the higher 

disorder affecting these structures. 

Compound 9 crystallizes in P21/c and presents no disorder. In the calixarene 

molecule of the asymmetric unit, the brominated rings present dissimilar inclinations with 

respect to the vertical C2 axis of the calixarene, Table 2.4. The significant difference 

between the proclivities of the two unparallel rings is due to the orientation and 

conformation of alkyl chains.  In effect, one of the four alkyl chain presents a gauche 

conformation of the first carbon atoms linked to the phenolic oxygen with a torsion angle 

of 62.3° for O-C1-C2-C3 and results in the projection of the corresponding aliphatic 

chains toward the direction of the C2 axis of the calixarene, this projection causes a 

decrease in the inclination (-4.3°) of the aryl unit bearing the alkyl chain, which presents 

the gauche conformation, while the adjacent aromatic ring exhibits a higher proclivity 

with respect to the axis of the calixarene. The alkyl chains are not parallel but present a 

slight curvature with respect to the C2 axis of the macrocycle, Figure 2.13. 

Figure 2.14 shows the spatial arrangement of 9, which forms well ordered 

bilayers, in which the alkyl chains are tilted in one direction, down [010] of ca. 19.1° 

with regard to the axis perpendicular to the bilayer. This compares to the values of 45° 

found in the series of amphiphilic para-acyl-calixarenes184 and the typical tilt angle of 

28° for the aliphatic chains in phospholipids.202 
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In the crystal structure of 9, the alkyl chains are deeply interdigitated, Figure 2.14, 

the width of the aromatic layer is ca. 4.00 Å when the length of the alkyl chain is ca. 14.5 

Å (such values are those of the distances perpendicular to the bilayer axis). The positions 

of the alkyl chains are very well defined due to the tight van der Waals interactions 

between the chains with shortest distances between the hydrogen atoms of alkyl chains of 

two calixarenes in a range of 2.32-2.50 Å.  The overall length of each alkyl chain in 9 is 

d(O···C) = 15.1 Å (between the phenolic oxygen and the corresponding carbon of the 

terminal methyl) while the overall bilayer thickness is 18.5 Å. The curvature of the chains 

leads to a flattened oblique structure down [010]. It should be noted that such a result is 

comparable to the crystal structure of the amphiphilic crown ether, N,N-didodecyldiaza-

18crown-6, reported in the work of Gokel,203 where the C12 chains presented similar 

interdigitation generating a very compact bilayer motif. 

The bilayer structure of compound 9 is also sustained by head-to-head 

interactions between calixarene molecules. These interactions are stabilized by bromine-

bromine interactions with d(Brd···Bra) = 3.90 Å and corresponding angles ?(C-Brd···Bra) = 

91.6° and ?(C-Bra···Brd) = 139°. These Type II halogen-halogen contacts allow the 

interaction between calixarenes, which adopt a non-parallel orientation of the flattened 

cones, across the interlayer plane. Finally non- included molecules of acetone solvent, 

which do not participate in the overall crystal packing, were found within the voids of the 

aromatic layer.  
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Figure 2.13. Representation of the molecular structure of para-Br-tetra-O-dodecyl-calix-4-arene in 

compound 9 

 
Figure 2.14. Representation of the crystal packing of compound 9 down [001] (a) and [010] (b) 

In summary, general trends can be delineated from this study where increasing the 

length of the aliphatic part of a series of pseudo-amphiphilic calix-4-arenes has resulted 

in the evolution of their self-assembly from herringbone type layers for 1 and 2 to a 

highly ordered bilayer system in 9 with intermediates that corresponded to a hybrid 

between the two motifs, observed in the pseudo-bilayer systems sustained by the 

structures of compounds 4 and 5. These results have demonstrated that rational 



www.manaraa.com

 48 

modification of the building units can afford the possibility of controlling the crystalline 

architecture and may be important towards the design of supramolecular materials based 

upon such pseudo-amphiphilic molecules. Of particular interest, the helical assembly 

based upon hexameric units of calixarenes that resembles a macrocycle, generated in the 

structure of 3, constitutes a very novel and interesting structure, transition between the 

bilayer83 and the tubular82 types of structures previously described as relevant motifs 

adopted by typical amphiphilic calix-4-arene molecules. 

2.4.2. Influence upon the crystal packing through variation at the upper rim 

The second part of this study consists in examining the systematic variation of 

upper rim functionalities in the particular case of calix-4-arenes substituted by O-hexyl 

chains at the lower rim. The crystal structures resulting from selective functionalization at 

the para-positions with 2Br + 2H, 4H, 4tBu have to be associated with the structure of 

compound 3 in the perspective of evaluating the effect of such directing agents upon the 

self-assembly of these molecules. 

Treating the molecular level of these systems, Figure 2.15 and Table 2.5 show 

that the four calixarene derivatives adopt the expected flattened cone conformation due to 

the O-hexyl tetrasubstitution at the lower rim. However, the presence of large, 

polarizable, electronegative substituents at the upper rim additionally affects the usual C2 

symmetry as illustrated by compounds 3 and 10 possessing bromine substituents, which 

induce higher inclination of the two farthest opposite rims. 



www.manaraa.com

 49 

 
Figure 2.15. Representation of the flattened cone conformation observed in O-hexyl-calix-4-arenes 

derivatives and designation of the distances and angles used to describe their geometry 

Table 2.5. Ring inclination angles and corresponding distances between opposite aryl groups in the 
crystal structures of compounds 3 and 10-12 

 

In the case of introduction of two bromine substituents at the opposite upper rims 

in compound 10, the presence of functionalities inducing electrostatic interactions results 

in a strongly organized bilayer arrangement of the calixarenes molecules governed by 

halogen-halogen interactions between dibrominated calixarenes in association with 

hydrophobic interactions between the alkyl chains, Figure 2.16. 

Interestingly, two phases of the structure of the dibrominated derivative were 

observed at -73°C (LT), 10a, and at 25°C (RT), 10b. They exhibit similar crystal packing 

sustained by head-to-head aromatic and Br-Br interactions and tail- to-tail van der Waals 

Compound 
Angle 1 
(°) 

Angle 2 
(°) 

Angle 3 
(°) 

Angle 4 
(°) 

Distance 1 
(Å) 

Distance 2 
(Å) 

 3 61.6 52.7 -14.7 -5.47 10.1 4.32 

10 54.6 53.7 -7.85 -2.85 9.90 4.82 

11 48.5 41.6 2.01 0.62 9.44 5.35 

12 48.7 43.3 -4.84 -0.53 9.53 5.24 
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interactions with a slightly more ordered situation in the structure collected at room 

temperature. 

The head-to-head interactions are stabilized by edge-to-face aromatic interactions 

with d(C···Ar) = 3.77 to 3.83 Å (LT) and 3.80 to 3.85 Å (RT) and by bromine-bromine 

interactions, d(Br···Br) = 3.89 (LT) to 4.11(RT) Å, ?(C-Br···Br) = 77.2° and 151° (LT) 

and 80.2° and 149° (RT), Figure 2.17. These values diverge from the Type II situation 

classified by Desiraju and Parthasarathy and the distance between the two bromine atoms 

is slightly higher than the sum of van der Waals radii. The bromine-bromine interactions 

between opposite rims in compound 10b are equivalent since they are related by 

inversion. The non-parallel orientation of the calixarene molecules is essentially 

governed by edge-to-face p-p stacking between adjacent calixarene molecules positioned 

at the same side of the bilayer with distances ranging from 3.76 to 3.81 Å. In the bilayer 

structure of 10, the alkyl chains are not interdigitated, the widths of the aromatic layers 

are 6.90 Å (LT) and 7.86 Å (RT), the lengths of the alkyl layers are 13.1 Å (LT) and 11.2 

Å (RT), these values are those of the distances perpendicular to the bilayer axis. Along 

the y-axis, the dimensions between calixarenes expand by 0.36 Å from 25°C to -73°C. 

The expansions/contractions in the dimensions of the crystalline assembly are reversible 

through several heating/cooling cycles. 

The two crystalline phases are not liquid crystals under the true definition of a 

liquid crystal since there is not enough disorder; however, they correspond to a non-

standard type of matter that may be classified as a type of crystalline liquid crystal where 

the chains form a fluid domain and the calixarene rims the rigid part. 
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Figure 2.16. Representation of the crystal packing of compound 10 down [001] (a) and down [010] 

(b), hydrogen atoms of the alkyl chains are omitted for clarity 

 

 
Figure 2.17. Detailed view of the Br-Br interactions in compound 10a (a) and 10b (b) 
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In the para-H system, 11, Figure 2.18, the overall supramolecular arrangement is 

sustained by face-to-face, d(C···C) = 3.65 Å, and edge-to-face, d(C···C) = 3.93 to 3.99 Å, 

aromatic stacking interactions between the upper rims of two opposite calixarene cones 

that are twisted of ca. 90° with each other and between the rings of adjacent molecules 

that are slightly slipped in the z-direction of 4.64 Å. This molecular organization results 

in the formation of a rippled bilayer system that is additionally stabilized by weak van der 

Waals interactions within the layers of non-interdigitated alkyl chains with distances 

between the hydrogen atom centers in a range of 2.55 to 3.45 Å. In the rippled bilayer 

system of 11, the widths of the undulated aromatic and aliphatic layers are ca. 9.98 Å and 

ca. 11.1 Å respectively. 

 
Figure 2.18. Representation of the crystal packing of compound 11 down [010] (a), hydrogen atoms 

of the alkyl chains are omitted for clarity, and detailed view of the head-to-head aromatic 
stacking interactions (b) 
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The presence of bulky groups such as tert-butyl in compound 12 disrupts the 

common head-to-head/tail-to-tail spatial arrangement sustained by the model compound 

para-H-O-hexyl-calix-4-arene, 11. Figure 2.19 illustrates how the steric constraints 

induced by the additional bulky groups tBu in association with the hydrophobic 

interactions between the different alkyl groups result in a disordered layered packing 

motif where the aromatic stacking interactions are now impossible and substituted by 

weak van der Waals interactions between the methyl of the bulky groups and the alkyl 

chains with interatomic distances H···H in a range of 2.28 to 2.71 Å. 

 
Figure 2.19. Representation of the crystal packing of compound 12 down [010] (a) and [100] (b) 
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The three-dimensional arrangement of 12 can be described as the superimposition 

of two non-equivalent layers that repeat along the x-direction. In each layer the 

calixarenes adopt alternate arrangements based upon the herringbone motif due to steric 

hindrance and van der Waals repulsion between the bulky substituents tert-butyl and a 

bilayer-type assembly caused by the partial pseudo-amphiphilic effect of the alkyl chains, 

Figure 2.19b. Such crystal packing constitutes a hybrid situation between the herringbone 

and bilayer types resulting from the presence of two opposing directing substituents at the 

upper and lower rims of the calixarenes. 

The structures generated by the four pseudo-amphiphilic calixarene derivatives 3, 

10, 11 and 12 are controlled by the synergy between intermolecular forces at the upper 

rim, the varying strength of the van der Waals forces between the pendant alkyl chains 

and the steric constraints induced by these alkyl chains. When one of these factors 

dominates, simple packing motifs occur. For example with long chain substituents and 

only weak aromatic interactions at the upper rim (e.g. p-H tetra-substitution) a rippled 

bilayer system is favored. When there is a balance between the forces, more or less 

simple motifs predominate: steric effect of the tBu groups and halogen-halogen 

interactions between dibrominated calixarenes in association with the hydrophobic 

interactions between the alkyl chains afford a disrupted bilayer and a strongly organized 

bilayer, respectively. However in situations where there is imbalance between the 

controlling forces (i.e. bromine-bromine interactions along with an increase of the 

molecular dipole moment) complex packing motifs are observed. In this particular case, 

the resulting helical packing motif of the corresponding tetrabromo-substituted molecules 
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is sustained by highly orientated Br-Br interactions between 6 calixarenes. 

2.5. Conclusions  

Structural study of the 12 compounds presented herein has demonstrated that it is 

possible to control the formation of specific structural motifs, for instance the bilayer-

type crystal packing, through the use of appropriately modified pseudo-amphiphilic calix-

4-arene with respect to the chain length at the lower rim and the functionality at the para-

positions. Such an understanding of the principles controlling the self-assembly of 

calixarenes in the solid state might lead to the rational design of new classes of materials.  

Selective functionalization and exploitation of interactions in calixarene systems should 

develop and expand their applications in a variety of domains such as physics (optics, 

electronics), material science (sensors, surfaces), catalysis or biomimetics. 

Of particular note, the auto-organizing properties of compounds 9 and 10, 

resulting from the cooperative combination of oriented brominated head groups and the 

presence of alkyl chains of selective lengths capable of forming a tightly packed 

hydrophobic layer in 9 or a softer expandable aliphatic region in 10, may lead to broader 

perspectives towards the rational design of tunable supramolecular amphiphilic or 

pseudo-amphiphilic systems possessing the ability to self-assemble at interfaces. 

Incorporation of a variety of functional groups selected for their intrinsic properties 

(polarity, magnetism, etc.) or variation of the size of the macrocycle (calix-6, calix-8-

arenes) may allow this class of supramolecular materials to be widely applicable. 

One can also find potential advantages resulting from the logical progression 

observed in the crystalline organizations that are adjustable through a limited set of 
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supramolecular parameters. Specifically, the transition between the helical motif of 

compound 3 and the pseudo-bilayer or bilayer organizations of 4 and 10 resulting from 

little molecular variation of the building units represents a significant outcome that is 

particularly relevant to supramolecular and crystal engineering strategies. Expansion of 

this study to a wider range of conditions during crystallization or to the use of closely 

related calixarene derivatives may enable switching between such structural motifs and 

afford supramolecular diversity in systems that could be comparable, to some extent, to 

the polymorphic phases of amphiphilic biomolecules. 
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Chapter 3 

Metal-Organic Networks based upon organic ligands containing two types of 

functionality: Supramolecular isomerism and Functionalization 

 

3.1. Introduction 

3.1.1. Metal-Organic Networks based upon pyridinecarboxylate ligands 

Supramolecular chemistry provides a successful approach to the self-assembly of 

simple molecular building units preselected for their complementary geometrical and 

binding capabilities.23 In particular, the rational design of supramolecular architectures 

based upon metal coordination geometries and multifunctional organic ligands has led to 

a variety of coordination polymers with predictable network architectures.60,66,204-207 An 

important outcome of this approach is represented by the structural diversity in metal-

organic networks that can occur through the existence of phenomena such as 

interpenetration122,123 or supramolecular isomerism93,208 and it is thereby possible to 

generate a wide range of structures from even simple ligands and known chromophores. 

In such a context, m-pyridinecarboxylates represent readily available ligands that have 

already been shown to be capable of generating coordination polymer networks that 

exhibit properties such as polarity,209-212 porosity213-216 or magnetism.217-221  
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Typical m-pyridinecarboxylates are angular ligands resulting from deprotonation 

of pyridine-3-carboxylic acid (nicotinic acid) or pyridine-3,5-dicarboxylic acid 

(dinicotinic acid ), Figure 3.1, and contain concomitantly anionic carboxylate and neutral 

N-donor functionalities. These ligands can be seen as hybrid molecules that possess the 

coordination capability of both functionalities. Specifically metal-organic networks can 

be strategically constructed using such unsymmetrical difunctional ligands via a thorough 

understanding of the topological features of the numerous structures resulting from the 

use of linkers containing one type of coordination site, e.g. 4,4’-bipyridine66,89-92,99-101,222 

or benzene dicarboxylate,95,206,223-237 with respect to chemical composition and propensity 

of the chromophore coordination geometry. However, considering the intrinsic 

asymmetry present in m-pyridinecarboxylate ligands, there is a range of opportunities for 

the variation of the network connectivity pattern and therefore a higher degree of 

structural diversity is expected. 

Another outcome of the use of such ligands is the expectation that the resulting 

infinite networks may provide novel materials possessing zeolitic or clay- like features 

related to the 3D213-215,238,239 or 2D209,211,240-242 host-guest compounds that can be 

generated from metal-organic self-assembly in presence of guest molecules in addition to 

the potential properties such as chirality209,243 due to the use of unsymmetrical ligands.   

 
Figure 3.1. Representation of the ligands nicotinic acid (a) and dinicotinic acid (b) 
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3.1.2. Network topologies 

Prior reports have already shown that the use of a ligand possessing two different 

functional groups as simple as nicotinate has allowed the construction of non-

centrosymmetric structures with optical properties.210-212,244 Most of these networks can 

easily be described as 2D clay- like type networks, square or rhombus grids, or 3D zeolite 

type networks, diamondoid or pillared sheets; however, certain results have shown that 

the introduction of a supplementary function generates more complex metal-organic 

networks.214 In this regard, consideration of the network topology represents a convenient 

tool for the comparison of multi-dimensional structures where the metal centers 

constitute the nodes of the network and the organic ligands their connecting links. A 

metal-organic network can thus be defined by its circuit notation np = n1.n2…np, where np 

represents the series of n-gons meeting at each node, all node being equivalent.245 For 

example, a 2D square grid is a 4.4.4.4 = 44 network since one node defines 4 circuits 

going through 4 adjacent nodes to join itself in a circuit; in a similar manner, a 3D 

diamondoid structure can be described as a 66 network. For more complex 3D nets, there 

may be more than one type of circuit starting out from one node, the corresponding 

circuit notation used is npmq in which p n-gons and q m-gons meet at each node. For 

example, the topologies of well-known lattices of inorganic materials such as NbO,88 

CdSO4
246 or PtS245 can be simplified by the representation of the connectivity of their 

nodes corresponding to the center of each element or ionic species. These three networks 

are all based upon 4-connected nodes and their circuit notations are 64.82, 65.8 and 42.84 

respectively, Figure 3.2. It is interesting to note that the five network topologies presented 
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herein possess the same stoichiometry 1:2 of node with respect to the links that connect 

them. 

 

Figure 3.2. Network topologies of the 2D square grid, 44 (a), 3D diamondoid, 66 (b), NbO, 64.82 (c), 
CdSO4, 65.8 (d) and PtS 42.84 (e) 

The knowledge of network topology of complex metal-organic networks is 

relevant not only in the perspective of describing and comparing coordination polymers 

but also towards the prediction of structures and supramolecular isomers that can be 

generated from molecular building units thus reduced to their geometrical counterparts. 

However, if the organic difunctional ligand is easily simplified, particular attention 

should be devoted to the coordination geometry that can be adopted by the node metal 

center, which constitutes the critical variable towards generation of specific topologies.   
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3.2. Zn and Cu Coordination Nodes: a Database Study 

Zn(II) centers generally exhibit tetrahedral coordination88 and, as revealed by 

Figure 3.3, can in appropriate circumstances serve as pseudo square planar nodes. 

Therefore, coordination of an angular bifunctional ligand, e.g. nicotinate, to a tetrahedral 

Zn(II) ion can result in a 44 (square grid) network, Figure 3.3c. Indeed, [Zn(nicotinate)2], 

A, exhibits such toplogy,209,211 Figure 3.4. However, as seen above, there are other 

possible topologies that are based solely upon square planar nodes: the 3D networks NbO 

(64.82)88 and CdSO4 (65.8).246 It should also be noted that PtS exhibits (42.84)245 topology 

but it is sustained by both square planar and tetrahedral nodes in a 1:1 ratio. In this 

regard, a hydrogen-bonded network247 and a metal-organic network248 solely based upon 

a square planar geometry of the nodes with 42.84 topology have been recently reported. 

 

Figure 3.3. A tetrahedral node projected down the 2-fold axis affording a pseudo square planar 
geometry (a), a projection of an angular spacer (b), a projection of a four-connected circuit from 

tetrahedral nodes and angular spacers (c) 
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Figure 3.4. Crystal structure of the square grid [Zn(nicotinate)2]n, A 

Clearly the specifics in terms of topological features and coordination propensity 

represent important elements towards the rationalization of the diversity of coordination 

network structures that can result from a given set of molecular components. 

Accordingly, a structural analysis of the geometrical preferences determined from a 

survey of the structures reported in the literature that contain the metal centers considered 

in this study may reveal of interest towards developing an understanding of the factors 

affecting supramolecular control.  

The coordination of Zn(II) with two different functionalities N-donor and 

carboxylate has generated two types of 4-connected nodes, in which the carboxylate 

function can adopt monodentate or bidentate coordination to metal center, Figure 3.5. A 

survey of the CSD revealed that out of 45 non-equivalent nodes containing the 

mononuclear Zn center coordinated to two nitrogen donor and two oxygen carboxylate, 

14 exhibit the bidentate coordination mode of the carboxylate moieties and 31 the 

monodentate mode. In all coordination compounds, the Zn-N distances range between 



www.manaraa.com

 63 

1.90 and 2.22 Å with an average of 2.06 Å (standard deviation s = 0.04). For the Zn-O 

distances, Figure 3.6 illustrates the two types of coordination modes. The distances 

corresponding to the bidentate carboxylate moities range between 2.01 and 2.43 Å with 

an average of 2.19 Å (s = 0.12); while the distances between Zn and bonded oxygen in 

the monodentate mode vary between 1.84 and 2.03 Å (average 1.96 Å, s = 0.03). For the 

non-bonded oxygen, in the monodentate coordination mode, values of d(Zn-O) above 3.5 

Å have been proven to be outliers (with 90% confidence that those values can be rejected 

based on Q-testing) so the corresponding distances Zn-O effectively limit to the range 

2.6-3.0 Å for 80% of confidence level, s = 0.125. 

It should be noted that only 17 structures are polymeric, most of them afford the 

diamondoid topology based upon tetrahedral nodes.249 However the infinite networks 

generated from the connectivity of pseudo square planar nodes of Zn(II) present the 

typical cis-coordination of the N-donor and carboxylate function around the metal 

center,209 Figure 3.4. 

 

Figure 3.5. Representation of the two coordination geometries resulting from coordination of 
tetrahedral mononuclear Zn(II) with the two different functionalities N-donor and monodentate (a) 

or bidentate (b) carboxylate 
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Figure 3.6. Histogram showing the distribution of Zn-O distances among the structures containing 

the mononuclear Zn in coordination with two functionalities N-donor and carboxylate 

A similar study of Cu(II) chromophores shows that their coordination capabilities  

are more versatile since they can exhibit square planar, tetrahedral, square pyramidal or 

octahedral coordination,88 Figure 3.7. The coordination of a mononuclear Cu(II) with two 

different functionalities N-donor and carboxylate has hitherto generated 277 non-

equivalent chromophores: 99 chromophores contain a 4-coordinate metal center, 92 are 

5-coordinate and 86 are 6-coordinate. In all coordination compounds, the Cu-N distances 

range between 1.92 and 2.40 Å with an average of 2.03 Å (standard deviation s = 0.07). 

The distribution of Cu-O distances is shown in Figure 3.8. The narrow region 

corresponding to distances inferior than 2.30 Å represents the coordination metal-oxygen, 

while the broad repartition of d(Cu-O) above 2.30 Å may be divided in two distinc t 

regions corresponding to different geometries adopted by the carboxylate group around 

the metal center. The shortest distances corresponding to the bonded oxygen of the 

carboxylate moieties in a tetrahedral geometry and these positioned in the equatorial 

plane of the transition metal range between 1.88 and 2.24 Å with an average of 1.97 Å (s  
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= 0.05). For the secondary oxygen, the separate study of 4-, 5- and 6-coordinate reveals 

interesting trends. In effect, the non-coordinated oxygen atoms of 4-coordinate 

chromophore present a higher occurrence in the range 2.55 to 2.80 Å (average at 2.78 Å), 

these of 5-coordinate Cu were in higher proportion between 3.00 and 3.30 Å (average at 

3.06 Å). The 6-coordinate tetrahedral or octahedral chromophores present both maxima. 

Careful analysis of the other parameters of the different structural types reveals that the 

difference does not only correspond to the difference in binding of the two oxygen of 

each carboxylate group, there is more monodentate character in the carboxylate of 5- and 

6-coordinate chromophores and more bidentate character in the carboxylate of 4-

coordinate and tetrahedral chromophores; the Cu-O distances are also representative, to 

some extent, of the position of the oxygen with respect to the octahedral or square 

pyramidal coordination sphere of the metal center so the statistic data illustrates as well 

the common axial elongation along the fourfold axis of the octahedron observed in Cu(II) 

“4+2” coordinated chromophores.88  

It should be noted that the relative orientation of the two types of ligands around 

the metal node is relatively homogeneous between cis- and trans-configurations (ca. 35% 

and 65% respectively). However, examination of the 49 infinite network structures 

provides significant insight concerning these tendencies. The coordination of 

polyfunctional ligands generally favorizes the trans configuration of square planar nodes 

as exemplified by the 2D square grid of [Cu(isonicotinate)2]n represented in Figure 3.9 

unless one type of coordinating group acts as chelating agent resulting in the alternative 

cis-configuration. 
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Figure 3.7. Representation of the chromophores of mononuclear Cu(II) containing the two 

functionalities N-donor and carboxylate: 4-coordinate trans square planar (a), cis square planar (b), 
tetrahedral (c), 5-coordinate square pyramidal (d) and 6 -coordinate octahedral (e) 
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Figure 3.8. Histogram showing the distribution of Cu-O distances among the structures containing 

the chromophore mononuclear Cu in coordination with two functionalities N-donor and carboxylate 
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Figure 3.9. Representation of the trans-configuration adopted by the Cu(II) chromophore (a) in the 

structure of [Cu(isonicotinate)2]n (b) (unpublished results) 

 

3.3. Experimental 

3.3.1. Materials and Methods 

Each synthesis was conducted using materials as received from chemical sources 

(Sigma-Aldrich or Fischer Scientific); solvent methanol was purified and dried according 

to standard methods.250 IR spectra were recorded on a Nicolet Avatar 320 FT-IR 

spectrometer. Thermogravimetric analysis was performed under nitrogen at a scan speed 

of 4ºC/min on a TA Instrument TGA 2950 Hi-Res. XRPD data were recorded on a 

Rigaku RU15 diffractometer at 30kV, 15mA for CuKa (? = 1.5418 Å), with a scan speed 

of 2°/min and a step size of 0.02° in 2? at room temperature. The crystals of all 

compounds were shown to be representative of the bulk by comparison of the XRPD 

patterns of the fresh samples with the corresponding patterns calculated from the crystal 

structures. The simulated XRPD patterns were produced using Materials Studio program 

package (Accelrys, Inc., © 2002) and Powder Cell for Windows Version 2.3 

(programmed by W. Kraus and G. Nolze, BAM Berlin, © 1999). FT-IR spectra, TGA 



www.manaraa.com

 68 

traces and XRPD patterns of all compounds are presented in appendices C1-C5. 

3.3.2. Syntheses  

Synthesis of {[Zn(nicotinate)2]·CH3OH·2H2O}n, 13251 

A methanolic solution of Zn(NO3)·6H2O (0.149 g, 0.500 mmol) was carefully 

layered onto a methanolic solution of nicotinic acid (0.123 g, 1.00 mmol), pyridine (0.079 

g, 1.00 mmol) and toluene (3.00 ml, 28.0 mmol) under ambiant conditions. The solution 

was left undisturbed for 48h and colorless crystals of 13 (0.112 g, 0.303 mmol, 60.5 %) 

formed at the interlayer boundary in addition to a white precipitate (0.060 g, 0.193 mmol, 

38.7 %) that was characterized by x-ray powder diffraction to be the square grid 

{[Zn(nicotinate)2]}n synthesized by W.B. Lin in 1998.209 

Synthesis of {[Zn(nicotinate)2]·C10H8}n, 14251 

Compound 14 was prepared in a similar manner as 13 with naphthalene, (640 mg, 

5.00 mmol) instead of toluene dissolved in the solution of nicotinic acid and pyridine. 

After 1 month colorless crystals of 14 (0.015 g, 0.034 mmol, 6.9 %) were collected from 

the mother liquor by physical separation. 

Synthesis of {[Zn(nicotinate)2]·2C6H5NO2}n, 15251 

Compound 15 was prepared in a similar manner as 13 with nitrobenzene, (3.00 

ml, 29.0 mmol), instead of toluene dissolved in the solution of nicotinic acid and 

pyridine. After 9 months, colorless crystals of 15 (0.119 g, 0.214 mmol, 42.8 %) were 

collected from the mother liquor by physical separation. 
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Synthesis of {[Cu(nicotinate)2(CH3OH)2}n, 16 

A solution of nicotinic acid (0.123 g, 1.00 mmol) dissolved in 10 ml methanol 

was layered onto a solution of Cu(NO3)2·2.5H2O (0.116 g, 0.50 mmol) dissolved in 10 ml 

methanol. Dark blue crystals of 16 (0.128 g, 0.344 mmol, 68.8%) formed at the interlayer 

boundary after 1 day. 

Synthesis of {[Cu(dinicotinate)2·1CH3OH·1H2O}n, 17 

A methanolic solution of 3,5-pyridinedicarboxylic acid (dinicotinic acid) (0.167 

mg, 1 mmol) was layered onto a solution of Cu(NO3)2·2.5H2O (0.116 mg, 0.5 mmol) in 

10 ml methanol. Light blue crystals of 17 (0.160 g, 0.364 mmol, 72.8%) formed at the 

interlayer boundary after 1 day. 

3.3.3. Guest sorption studies 

Crystals of 13-17 were observed to lose their single-crystallinity in days to weeks 

when removed from the mother liquor. High-resolution thermogravimetric analysis on a 

fresh sample of 13 revealed a weight loss of ca. 16.5% between 100ºC and 250ºC, which 

is consistent with the removal of solvent molecules (calculated loss of 18% for 2 

molecules of H2O and 1 molecule of MeOH). Compounds 14 and 15 were observed to 

desorb or partially desorb their guest molecules in similar range of temperatures. FT-IR 

and TGA analysis showed that the solvent molecules in the two compounds 16 and 17 

were readily desorbed upon exposure to atmosphere. Thermogravimetric analysis of 16 

revealed a weight loss of 8.6% between 60 and 120ºC, which is consistent with the 

removal of one coordinated methanol molecules (calculated loss of 8.6% for one solvent 
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molecule). A TGA measurement effected on a sample of 16 let under ambient 

atmosphere for ca. one hour showed no weight loss in this range of temperature. The 

infra-red spectra of 17 shows the absence of bands characteristic of solvent molecules.   

3.3.4. X-ray Crystallography 

In crystal structures of 13-17, all non-hydrogen atoms were refined with 

anisotropic displacement parameters except for the atoms of solvent in 13 and 17. The H 

atoms of the C-H groups were fixed in calculated positions except for the carbon atom of 

methanol solvent in 13 and 17. The two molecules of solvent in the asymmetric unit of 13 

were disordered, the water molecule was refined with fixed site occupation factors (s.o.f). 

values of 0.5 for each oxygen atom, the methanol molecule was 2-fold disordered and 

refined over two equally occupied positions of the O atoms. In the asymmetric unit of 16, 

one methanol molecule was found to be coordinated to Cu ion, its OH hydrogen atom 

was located via difference Fourier map inspection and refined with riding coordinates and 

isotropic thermal parameters based upon the corresponding O atoms [U(H) = 1.2Ueq 

(O)]. In 17, the carbon and oxygen atoms of the solvent methanol were disordered over 

several general positions and refined with fixed s.o.f. for occupancies of 0.5 for each 

carbon and 0.25 for each oxygen; the water molecules in the asymmetric unit of 17 were 

disordered and refined with fixed s.o.f. values of 0.5 for each oxygen atom. Full 

crystallographic data can be found in the electronic supplementary data. Crystal data and 

structure refinement parameters of compounds 13-17 are presented in Table 3.1.
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Table 3.1. Crystallographic data for compounds 13-17 
Compound 13 14 15 16 17 
Chemical formula C13H16N2O7Zn C22H16N2O4Zn C24H18N4O8Zn C14H16CuN2O6 C15H8CuN2O10 
Formula weight 370.09 437.74 555.79 371.83 439.77 
Temperature, K 200(2) 200(2) 200(2) 200(2) 100(2) 
Crystal system Tetragonal Monoclinic Monoclinic Monoclinic Monoclinic 
Space group I-42d C2/c C2/c P2(1)/c P2(1)/c 
a, Å 21.351(3) 10.899(2) 11.922(3) 7.075(3) 12.3438(12) 
b, Å 21.351(3) 11.292(2) 9.990(2) 7.705(3) 10.5840(10) 
c, Å 6.9183(15) 15.358(3) 20.107(5) 14.248(6) 14.9068(14) 
a, deg 90 90 90 90 90 
ß, deg 90 100.47(3) 93.708(4) 99.714(8) 94.856(2) 
γ, deg 90 90 90 90 90 
V, Å3 3153.9(10) 1858.6(7) 2389.9(9) 765.5(6) 1940.5(3) 
Z 8 4 4 2 4 
ρcalcd, g.cm-3 1.559 1.564 1.545 1.613 1.505 
µ, mm-1 1.593 1.354 1.086 1.459 1.179 
F(000) 1492 896 1136 382 884 
Crystal size, mm 0.2x0.2x0.15 0.2x0.15x0.1 0.2x0.2x0.15 0.50x0.20x0.05 0.10x0.05x0.05 
θ range for data collection, deg 1.91 to 28.25 2.62 to 28.26 2.03 to 25.00 2.90 to 27.11 1.66 to 27.50 

Limiting indices 
-8<=h<=27 
-25<=k<=12 
-8<=l<=8 

-13<=h<=5 
-15<=k<=14 
-9<=l<=20 

-14<=h<=11 
-11<=k<=8 
-23<=l<=23 

-9<=h<=8 
-8<=k<=9 
-16<=l<=18 

-15<=h<=16 
-13<=k<=13 
-16<=l<=19 

Reflections collected 4472 2739 5878 4399 13095 
Unique reflections 1767 1692 2099 1679 4377 
R(int) 0.0442 0.0294 0.0552 0.0550 0.0800 
Completeness to θ 91.9 73.2 99.9 99.4 98.3 
Absorption correction SADABS SADABS SADABS SADABS SADABS 
Max. and min. transmission 1.000 and 0.777 1.000 and 0.777 1.000 and 0.808 1.000 and 0.805 1.000 and 0.867 
Data / restraints / parameters 1767 / 0 / 125 1692 / 0 / 132 2099 / 0 / 168 1679 / 0 / 107 4377 / 0 / 259 
Goodness-of-fit on F2 1.152 0.883 1.035 1.019 1.022 

Final R indices [I>2sigma(I)] 
R1 = 0.0449, 
wR2 = 0.1112 

R1 = 0.0427, 
wR2 = 0.0838 

R1 = 0.0463, 
wR2 = 0.0896 

R1 = 0.0461, 
wR2 = 0.0998 

R1 = 0.0589, 
wR2 = 0.1566 

R indices (all data) 
R1 = 0.0541, 
wR2 = 0.1134 

R1 = 0.0574, 
wR2 = 0.0872 

R1 = 0.0696, 
wR2 = 0.0977 

R1 = 0.0700, 
wR2 = 0.1099 

R1 = 0.0883, 
wR2 = 0.1799 

Absolute structure parameter 0.10(3) N/A N/A N/A N/A 
Largest diff. peak and hole, e.Å -3 0.538 and -0.329 0.551 and -0.349 0.371 and -0.280 0.414 and -0.335 0.945 and -0.978 
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3.4. Results and Discussion 

3.4.1. Supramolecular isomers of [Zn(nicotinate)2]n 

Self-assembly of Zn(NO3)2 with nicotinate under mild conditions has afforded 

several products including a novel 3D network that has a connectivity based solely upon 

square planar nodes defined by the circuit symbol 42.84, 

{[Zn(nicotinate)2]·MeOH·2H2O}n, 13, and two new forms of the 2D network 

[Zn(nicotinate)2]n,209 A, presented above, {[Zn(nicotinate)2]·naphthalene}n, 14, and 

{[Zn(nicotinate)2]·2 nitrobenzene}n, 15, both of which exhibit the same 44 topology as A.  

The crystal structure of 13 is illustrated in Figure 3.10a. The metal coordination is 

the same as that in the square grid [Zn(nicotinate)2]n A represented in Figure 3.4. 

However, when one examines the connectivity of the Zn centers, adjacent square planar 

nodes are twisted at an angle of ca. 25º, resulting in a 3D network, Figure 3.10b, instead 

of a 2D square grid. The circuit symbol of this network is 42.84. PtS245 is defined by the 

same circuit symbol; however, the two nets are fundamentally different and the 

projections down [100] are non-superimposable, Figure 3.11. The nodes are eclipsed 

along the z-axis with a vertical distance between two Zn atoms of 6.92 Å and there are 

edge-to-face interactions between the pyridyl rings of nicotinate ligands with a shortest 

distance d(C-C) = 3.8 Å. 13 possesses cavities of effective dimensions 4.35 X 4.35 Å that 

form infinite channels parallel to the z-axis, Figure 3.10, left. These channels contain 

columns of disordered solvent molecules. The density of 13 is 1.56 g.cm-3 (1.30 g.cm-3 

without solvent).  
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Figure 3.10. Crystal structure of the 3D network [Zn(nicotinate)2]n, guest molecules are omitted for 
clarity (a). Schematic representations of the connectivity of the Zn centers for the network of 13 (b). 

 
Figure 3.11. Connectivity of 2 tetrahedral and 2 square planar nodes to form the 42.84 network of PtS 

(a) and connectivity of 4 square planar nodes to form 13 (b) and projections of the two networks 
down [100]. 

In order to systematically determine the effect of templates on the formation of A 

or 13, the same reaction was conducted in the presence of several aromatic guests: 

benzene, nitrobenzene, naphthalene, chlorobenzene, o- and p-xylenes, p-nitroaniline and 

anisole, as well as in the absence of template. Analysis of simulated and freshly collected 

XRPD patterns, presented in Figures 3.12-3.13, indicated that most reactions resulted in 

the formation of A whereas nitrobenzene affords 13 or 15 and naphthalene affords 14. 
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Figure 3.12. X-ray powder diffraction pattern calculated from the single crystal structures of A (a), 

13 (b), 14 (c) and 15 (d) 
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Figure 3.13. X-ray powder diffraction patterns of the products of the reaction Zn(NO3)2 + Nicotinate 
in different conditions: (a) first product of the reaction in PhNO2, (b) MeOH only, (c) PhH, (c) PhCl, 

(d) o- and p-Ph(CH3)2, (e) p-H2NPhNO2 and (f) PhOCH3. 

14 and 15 contain 2D square grid networks (44), Figure 3.14a. 14 crystallizes in 

the centrosymmetric space group C2/c, the parallel infinite layers of square grids are 

eclipsed and the d(Zn-Zn) separations are 7.68 Å, resulting in the formation of parallel 

channels perpendicular to the planes of the square grids. Each cavity has effective 

dimensions of 4.45 X 4.45 Å, and is filled by one molecule of naphthalene that interacts 
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with the aromatic rings of the surrounding nicotinate ligands by face-to-face p-p stacking 

with distances between the centroids in a range of 3.4 to 3.7 Å. The density of 14 is 1.56 

g.cm-3 (1.10 g.cm-3 without guest). 15 contains a larger amount of guest (density without 

guest = 0.86 g.cm-1) and exhibits much larger interlayer separations than either A or 14 

(d(Zn-Zn) = 10.05 Å), Figure 3.14.  It should be noted in A adjacent grids are staggered 

whereas in 14 and 15 they are almost eclipsed. 

 

Figure 3.14. Crystal structure of the 2D square grid in 14 and 15 (a) and the vertical stacking 
between parallel infinite layers showing the intercalation of naphthalene (b) and nitrobenzene (c) 

molecules. 

Crystals 13, 14 and 15 are sustained by the same node. Only a subtle difference of 

the conditions during crystallization influences which phase is generated. A summary of 

the relationships between the structural supramolecular isomers is shown in Figure 3.15. 

The characterization of components, achieved by powder diffraction and 

thermogravimetric analysis, reveals that heating above 220°C results in conversion of 13, 

14 and 15 to A. Figures 3.16-3.18 represent the comparison between simulated and 

freshly collected powder patterns of the three compounds presented herein, the expected 
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structures that would result from their guest desorption without structural change and the 

corresponding samples obtained after thermal treatment, the later presenting identical 

patterns as that of the 2D [Zn(nicotinate)2]n shown in Figure 3.12a. A was formed via 

hydrothermal conditions and it should therefore be unsurprising that it appears to be the 

thermodynamically favored product. 

 

 

Figure 3.15. The relationship between 13-15 and A. Reagents and conditions: (i) PhCH3 or PhNO2 in 
MeOH, diffusion; (ii) C10H8 or PhNO2 in MeOH, slow diffusion; (iii) MeOH or PhH or PhCl or o-, p -

Ph(CH3)2 or p -H2NPhNO2 or PhOCH3 in MeOH, precipitation; (iv) and (v) 220-250°C, 1 hour. 
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Figure 3.16. X-ray powder diffraction patterns of 13 (a) fresh sample, (b) sample heated to 250ºC and 

(c) calculated from the single crystal structure without guest. 
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Figure 3.17. X-ray powder diffraction patterns of 14 (a) fresh sample, (b) sample heated to 220ºC and 

(c) calculated from the single crystal structure without guest 
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Figure 3.18. X-ray powder diffraction patterns of 15 (a) fresh sample, (b) sample heated to 250ºC and 

(c) calculated from the single crystal structure without guest. 
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3.4.2. Additional Functionality: Structures of [Cu(nicotinate)2]n and [Cu(dinicotinate)2]n 

The reaction of Cu(NO3)2·2.5H2O and nicotinate in methanol has afforded the 

novel 2D rhombus grid network 44 [Cu(nicotinate)2(MeOH)2]n, 16. The use of the organic 

ligand dinicotinate that contain an additional functional group carboxylic acid has led to 

the formation of a related 3D network, 17, extended version of the 2D 44 network by 

pillaring via coordination of the neutral oxygen donor of the additional functionality. 

The crystal structure of compound 16 consists of a 2D rhombus grid network. 

Each Cu center is coordinated to two pyridyl groups and two monodentate carboxylate 

moieties of four nicotinate ligands in a trans configuration. The Cu center is further 

coordinated to the oxygen atoms of two methanol molecules in the axial positions of the 

octahedral coordination geometry, Figure 3.19a. The axial Cu-O(methanol) distances of 

2.65 Å are significantly longer than the distances Cu-O(nicotinate) and Cu-N(nicotinate) 

of 1.97 and 2.00 Å respectively due to the axial elongation along the fourfold axis of the 

octahedral environment of Cu(II) chromophore. The non-bonded oxygen atoms of the 

carboxylate groups are at a distance d(Cu-Onon-bonded) = 3.15 Å. These values are 

consistent with the corresponding standards presented above for this chromophore. The 

rhombus-shaped cavities deviate from regular square geometry by angles of 56.8º and 

123º. Along the x-axis, the parallel rhombus grids are eclipsed and the d(Cu-Cu) 

separations are 7.07 Å, generating parallel channels perpendicular to the planes of the 

grids, Figure 3.19.  
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Figure 3.19. Crystal structure of the 2D square grid in 16 (a) and vertical stacking between parallel 
infinite layers down [100] (b) and [001] (c) 

Each cavity has effective dimensions of 4.70 X 4.70 Å, and is filled by two molecules of 

coordinated solvent methanol. The hydroxyl group of each coordinated methanol 

interacts via hydrogen bonding with the non-bonded oxygen atoms of the monodentate 

carboxylate of the nicotinate ligands (d(O-H···O = 2.67 Å). The density of 16 is 1.61 

g.cm-3 (1.33 g.cm-3 without coordinated solvent). 

Compound 17 crystallizes in the monoclinic space group P21/c. The asymmetric 

unit of 17 contains one Cu center and two dinicotinate ligands. Figure 3.20 shows the 

Cu(II) chromophore in 17. The metal adopts a square pyramidal coordination geometry 

with two pyridyl groups (d(Cu-N) = 2.00 Å) and two monodentate carboxylate moieties 

(d(Cu-Obonded) = 1.95 Å, d(Cu-Onon-bonded) = 2.97 and 3.22 Å ) in a trans configuration in 

the equatorial positions and one of the oxygen of the additional carboxylic group of the 
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dinicotinate ligand is coordinated onto the axial position (d(Cu-O) = 2.35 Å). The non-

deprotonated carboxylic group concomitantly interacts via hydrogen bonding between the 

hydroxyl proton and the carboxyl group of an adjacent square grid with d(O-H···O) = 

2.53 Å. Figure 3.20 illustrates the environment of the Cu(II) center in compound 17. The 

overall network of 17 can be described as 2D distorted square grids, represented in Figure 

3.21, that are pillared by the additional carboxylic functions hence resulting in a 3D 

network that possesses a topology related to the a-polonium net, Figure 3.22. 17 

possesses cavities of effective dimensions 3.67 X 3.67 Å that form infinite channels 

perpendicular to [101]. These channels contain columns of disordered solvent molecules. 

The density of 17 is 1.50 g.cm-3 (1.35 g.cm-3 without solvent). 

 

 
Figure 3.20. Representation of the chromophore mononuclear 5-connected in compound 17 
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Figure 3.21. View of the 2D square grid network within the crystal structure of 17, guest molecules 

are omitted for clarity 

Compounds 16 and 17 contain 2D 44 networks. The presence of an additional 

functionality carboxylic acid in the ligand used to generate 17, does not disrupt the 

topology of the 2D net but only slightly affects the conformation of the grids from a 

rombus grid to a distorted square grid. The fact that the additional carboxylic is not 

deprotonated is not surprising considering the necessity of conservation of charge, 

effectively the Cu(II) chromophore considered in this study can only be coordinated to 

two carboxylate groups. As a sideline, it is interesting to mention that a possible 

supramolecular isomer of compound 17 based upon 2D nets purely hydrogen bonded via 

the complementary carboxylic functions is possible although the synthesis conditions 

have ruled it out since the strength of coordination bond and the efficiency of the overall 

crystal packing predictably favorize the formation of the 3D net 17. Finally these results 

exemplify the modular nature of supramolecular metal-organic networks, which can be 

rationally functionalized through variation of the building units without critical change 

upon the primitive network topology. 
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Figure 3.22. Crystal structure of the 3D network [Cu(dinicotinate)2], guest molecules are omitted for 
clarity (a). Schematic representations of the connectivity of the Cu centers for the network of 17 (b). 

 

3.5. Conclusions  

In summary, the five compounds presented herein illustrate structural diversity 

and modularity of supramolecular metal-organic networks. There are three salient 

features of 13-17 that deserve note. 

First, a novel 42.84 network based upon a single 4-coordinated node has been 

generated and it can be rationalized on the basis of the connectivity and the geometry of 

the molecular building blocks. The ability of guests to intercalate in the square grid form 

of [Zn(nicotinate)2] is perhaps unsurprising64,97 but to our knowledge such a wide range 

of separations has not yet been seen in laminated coordination polymers. This study 
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further confirms how supramolecular isomerism can afford superstructural diversity from 

even the most simple chemical building blocks. 

Second, the presence of an additional functionality that can hydrogen bond and 

even coordinate to the node metal center does not appear to prevent or even strongly 

influence the topology of the primitive 2D coordination network. 

Finally, these five new examples of rationalization of networks topology based 

upon geometry and connectivity of organic and inorganic building blocks suggest that 

topological approaches to the design of hybrid solids could represent an opportunity of 

broad relevance towards the construction of novel functional supramolecular materials.   
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Chapter 4 

Metal-Organic Networks based upon conformationally labile organic ligands: 

Porosity and Flexibility 

 

4.1. Introduction 

4.1.1. Metal-Organic Networks based upon dimetal cluster nodes 

Crystal engineering of metal-organic networks via self-assembly of metal ions 

and multifunctional ligands has attracted considerable attention because of the structural 

diversity present in such compounds which in turn facilitates systematic evaluation of 

structure property relationships.93,94,144,145 In this context, bimetallic building units 

constitute an ubiquitous class of nodes in coordination chemistry,95,206 in particular 

dimetal tetracarboxylate chromophores possess a well-known geometry and coordination 

capabilities that make them ideal building blocks for the design via self-assembly of 

metal-organic coordination polymers. Figure 4.1 shows a representation of the 

chromophore resulting from the complexation of Cu(II) with carboxylate ligands and 

how it can serve, in appropriate circumstances, as square planar or octahedral node. 

Therefore, coordination of a bifunctional dicarboxylate ligand to Cu(II) can afford 

infinite metal-organic networks with predictable topology. For example, self-assembly of 

a square planar node with a linear linker has afforded the square grid Cu2(benzene-1,4-
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dicarboxylate)2,252 such a 2D network can also be pillared via the use of N,N’-donor 

ligands generating an octahedral network.253,254 Figure 4.1 shows a schematic 

representation of metal-organic square grids and octahedral networks generated from 

square planar and octahedral me tal nodes, they represent prototypical infinite networks 

and they inherently possess cavities that are suitable for interpenetration or enclathration 

of a range of organic guest molecules.66,90-92,97-103,105,110-116,119,122,236,255 In a sense, they 

have structural features that compare to both clays and zeolites since they can be lamellar 

or porous. In this perspective, the use of building blocks specifically chosen for their 

functionality has been shown to generate metal-organic networks that exhibit properties 

such as luminescence,256 porosity114,119,236 or magnetism.125 

 
Figure 4.1. Top (a) and side (b) views of the dimetal tetracarboxylate chromophore and schematic 

representation of the 2D square grid (c) and 3D octahedral (d) networks that can be generated 
through use of appropriate linear linkers. 

4.1.2. Conformational lability of the organic linker 

The rational design of supramolecular metal-organic networks based upon 

preselected rigid building blocks has afforded an increasing number of novel compounds 
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since the early 1990’s.60,66 In this respect, the use of flexible linkers or spacers has yet to 

be fully developed. In effect, according to a comparative CSD survey, the number of 

structures reported that contain transition metals in coordination with N- or O-donor 

ligands that possess only rigid aromatic groups represents ca. 10 times the number of 

corresponding metal-organic compounds that contain at least two flexible methylene 

groups (16661 hits for the former search vs. 1756 hits for the latter). Rigid ligands have 

been shown to be capable of generating multiple supramolecular isomers for a given set 

of molecular components and a range of reaction conditions.251 However, use of flexible 

ligands should in principle offer a greater degree of structural diversity and there has been 

interest in such ligands for magnetic257-259 or porous260-262 materials.  

While most interest in the literature of coordination polymers containing saturated 

fragments has focused on introduction of flexibility via alkyl substituents within 

otherwise rigid ligands,208,235,260,263-269 the use of long bifunctional alkyl chains has 

generated several coordination networks that present either interpenetration270 or 

amphiphilic- like behavior271,272 due to the expected all anti conformation of the aliphatic 

parts. However there has been very little work designed to show how systematic variation 

of the elemental constituents or the crystallization conditions can direct such flexible 

ligands to adopt specific conformations.208,266,269,273 In this regard, the generation of 

flexible architectures with variable shapes and sizes should represent great potential for 

useful developments in supramolecular chemistry, since the resulting structures may 

expand the concept of supramolecular isomerism to its conformational counterpart and 

provide a route to the generation of a novel class of nanostructures possessing atypical 
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properties towards practical applications. 

The research presented herein intends to demonstrate how the utilization of 

bifunctional ligands possessing small aliphatic chains that are related to well-known rigid 

linkers can provide the basis for a farther in-depth understanding of the factors that 

control conformational flexibility/isomerism towards the generation of novel functional 

metal-organic networks. The acquired knowledge will allow the strategic extension of 

this research to the development of highly tunable hybrid materials. 

The glutarate anion is a readily available bifunctional ligand which is effectively a 

flexible variant of benzene-1,3-dicarboxylate, a ligand which can sustain discrete225,274 

and infinite230,275 structures with nanoscale features. In a similar vein, the ligand adipate 

can be seen as a flexible variant of benzene-1,4-dicarboxylate, Figure 4.2. 

 
Figure 4.2. Representation of the glutarate (a), adipate (b), benzene-1,3 -dicarboxylate (c) and 

benzene-1,4-dicarboxylate anions (d). 

As revealed by Figure 4.3, glutarate anions possess a three carbon aliphatic 

backbone and there exist three likely conformations: anti-anti, anti-gauche and gauche-

gauche. 
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Figure 4.3. The three possible conformations of glutarate alkyl chains and the corresponding 

projections down the Csp3-Csp3 bonds with the range of torsion angles observed in the structures 
deposited in the CSD. 

A survey of the Cambridge Structural Database revealed that the anti-anti and 

anti-gauche conformations tend to be favoured in coordination compounds. A 

conformational analysis of crystal structures containing the glutarate fragment and metals 

was conducted using the CSD and revealed that out of 31 non-equivalent glutarate 

ligands, 13 exhibit the anti-anti mode, 13 the anti-gauche mode and 5 the gauche-gauche 

conformation, Table 4.1. It should be noted that the orientation of the carboxylate 

moieties with respect to the backbone is fairly variable although the observed trends are 

in favor of the staggered conformation for the anti-gauche mode versus the eclipsed 

conformation for the anti-anti mode. 
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Table 4.1. Conformational analysis of crystal structures containing the glutarate fragment and 
metals conducted using the CSD. 

Torsion Angles (º) CSD Refcode 

C1-C4 C2-C5 O1-C3 O5-C3 
Conformation 

MIYMOW 65 75 17.5 43.5 
ZADJUJ  69 70 32 82.5 

MEZSALa 69 69 4.5 4.5 
XATNIPa 69.5 69.5 4 4 
TODNAB 70 77 20 7 

Gauche-Gauche 

QANKOF 43 180 95 35 
VIRYUQ 46 172 66.5 85.4 
GLUECU 59 170 77.6 31.5 
QIVHAE 62 165 6 77 

MASXINa 62 180 23 70.5 
ACBRUA 65 178 26.5 87.5 
GLTECU 68 177 19.5 27 
SIFWEJ 68 177 43.5 54 
SUJXEA 68 178 21.5 48 

HOTGOM 71 170 0.8 75 
QIWKEM 71 179 8 49 
TODNEF 74 172 6.5 49.5 

QANKIZ disordered 60-66 150-163 3-9 30-77 

Gauche-Anti 

OCENUF 166 179 51 34.5 
MASXINb 169 174 17 21 
XEDCUE 169 176 88 88 
QIVGUX 172 172 7 7 
TEGMIB 172 173 10 15.5 
VIRZAX 173 173 34.5 95 
CDGLTR 173 175 4.8 0.35 
XODFUR 174 174 34 85 
MIYMUC 175 176 0.5 32 
FUMCUL 177 180 3.2 0.3 
HOTHAZ 179 179 11 8 
XATNIPb 179 179 10 10 
MEZSALb 180 180 10 10 

Anti -Anti 

BOMXOQ structure unavailable  

 

Figure 4.4 shows the five conformations anti-anti-anti, anti-anti-gauche, anti-

gauche-anti, anti-gauche-gauche and gauche-anti-gauche observed for the four 

methylene of the ligand adipate.  
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Figure 4.4. The five observed conformations of adipate alkyl chains and the corresponding 

projections down the Csp3-Csp3 bonds with the range of torsion angles observed in the structures 
deposited in the CSD. 

The corresponding survey of the CSD revealed that the anti-anti-anti and gauche-

anti-gauche conformations are favoured in coordination compounds: out of 35 non-

equivalent adipate ligands, 12 exhibit the anti-anti-anti mode and 12 the gauche-anti-

gauche conformation, Table 4.2. 

Such a study has also revealed the extreme scarcity of extended structures based 

upon dimetal tetracarboxylate chromophores,276 which are of considerable interest to 

strategically prepare metal-organic compounds by self-assembly.95,206,223-232  

Our strategy towards the rational design of specific structures based upon the 

coordination between bimetallic building units and flexible spacers was inspired by the 

analogy between the flexible bifunctional ligands glutarate and adipate and the rigid 

benzene-1,3 and 1,4-dicarboxylate anions. In this respect, it is possible to delineate 

important trends regarding the influence of the conformation adopted by the aliphatic 

chain of the dianion associated with the geometry of the node upon the topology of the 

resulting networks. 
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Table 4.2. Conformational analysis of crystal structures containing the adipate fragment and metals 
conducted using the CSD. 

Torsion Angles (º) CSD 
RefCode C1-C4 C2-C5 C3-C6 O1-C3 O6-C4 

Conformation 

NIPHAV 60 65 175 58 12 Gauche-Gauche-Anti 
ECIVUH 60 180 60 55 57.5 
WIPQER 63 180 63 41 41 
TODNIJ  69 180 69 45 45 

ZEMZUM 80 180 80 10 10 
MITHUSa 68 179 69 38 50 
MIYNAJa 56 180 56 60 61 
MIYNAJ b 59 173 59 84 82 
MIYNENa 59 180 59 57 59 
MIYNENb 55 175 55 79 79 
MIYNIRa 57 180 57 58 61 
MIYNIRb 55 176 55 75 75 
IBODOS 85 180 75 66 39 

Gauche-Anti-Gauche

OCENOZ 47 151 169 38 5 
ADIECU 60 170 170 55 3.5 

FOQLOM 60 180 180 64 7 
NOVHAH 60 180 180 90 20 
JOSNAGa 62 175 180 55 47 
POSBAA 65 180 170 62 3 

MITHUSb 68 176 170 32 25 
IGIDOR 69 176 178 50 14 
WOSDAJ 70 180 180 25 5 

Gauche-Anti-Anti 

MITHUSc 179 75 180 86 80 Anti -Gauche-Anti 
LOTDON 170 180 180 8.5 80 
QOPLAI 175 180 175 20 20 
HUTYOK 177 180 177 17 17 
ADIQNI 180 180 180 55 55 

JOSNAGb 180 180 180 67.5 67.5 
QOPLEM 180 180 180 20 20 
QOPLIQ 180 180 180 1.5 4 
TUDHOP 180 180 180 1.5 5.5 
WAVCAX 180 180 180 7.5 90 
WEGJUN 180 180 180 5 5 
WIPQAN 180 180 180 55 55 
WOSDEN 180 180 180 60 60 

Anti -Anti-Anti 

 

Considering the case of a dimetal tetracarboxylate chromophore as 4-connected 

node, complexation with the flexible link glutarate, in a given conformation anti-anti, is 
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expected to generate similar topologies as those obtained with benzene-1,3-

dicarboxylate.225,230-232 When the glutarate anion adopts the anti-gauche mode, it can be 

schematically seen as a curved spacer and, afford 4 possible geometries around the 

bimetallic unit, Figure 4.5: 

- all glutarate ligands in “trans” with each other, adopting a C2 symmetry with 

respect to the metal-metal axis, are expected to generate a 1D, double chain, topology;  

- all glutarate ligands in “syn” with each other, adopting a C4 symmetry with 

respect to the metal-metal axis, are expected to generate a 2D, distorted square grid, 

topology; 

- an alternate coordination modes around the dimetal cluster in “syn-syn-trans-

trans” or “syn-trans-syn-trans” should lead to geometrical constraints and force the 

dicopper tetraglutarate to extend its topology to a more complex 3D network.  

 
Figure 4.5. The three possible conformations of glutarate alkyl chains and the possible geometries of 

the glutarate anti-gauche  anions around a bimetallic building unit leading to distinct 1D and 2D 
topologies. 

In the case of glutarate anion adopting the gauche-gauche mode, coordination 

with a transition metal node may undergo high geometrical constraints and result in 
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unpredictable structures based upon atypical coordination as exemplified by the 2D 

polynuclear structure of silver(I)glutarate.277 On the other hand the conformational 

constraints of the carbon backbone may be overcome by the variation of the torsion angle 

of the carboxylate groups with respect to the corresponding methylene groups and 

generate a curved linker that would afford similar topologies as those expected from the 

anti-gauche mode.  

The adipate anion possesses a supplementary degree of freedom in addition to a 

wide range of possible conformations of the carboxylate functions with respect with the 

carbon backbone. The resulting metal-organic networks may reveal difficult to 

specifically predict; however, Figure 4.4 has shown that adipate may simply be seen 

either as a linear or as a curved ligand, and would therefore generate the corresponding 

topologies (2D square grid or distorted grid and 1D double chain) in appropriate 

circumstances.  

In this context the coordination of glutarate and adipate anions with bimetallic 

building units has been systematically evaluated by variation of the neutral axial ligand 

and the reaction conditions. We have thus prepared a series of coordination polymers 

based upon these flexible ligands and have observed that the generation of dicopper 

tetraglutarate and tetraadipate chromophores has lead to the preferential conformations 

anti-gauche and anti-gauche-gauche, with the topologies of the products obtained being 

influenced by the coordination geometry. Since this work has been instigated with an eye 

towards the generation of supramolecular porous materials, it is important to address 

some of the significant developments concerning this area. 
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4.2. Porous metal-organic networks 

4.2.1. Context 

Since the discovery by Hofmann in 1897 of the first cyanide inclusion compound 

Ni(CN)2·NH3·C6H6,36 which was only structurally characterized about fifty years 

later38,39; a large number of supramolecular metal-organic networks suitable for 

enclathration of a range of organic guest molecules has been subsequently generated and 

investigated in terms of network topology and host-guest interactions. 

In this context, metal-organic networks structures exemplify predictability since 

their network structures can be controlled by the preselection of an appropriate node 

(metal coordination geometry) and spacer (organic ligand).88,122,278,279 However their 

intrinsic properties such as thermal stability or porosity have been, to some extent, 

overlooked.143 Recent intensive research in the field of metal-organic networks has 

resulted in an increasing number of novel porous compounds that possess characteristics 

unattainable in zeolite chemistry.95,96,114,125,144,145,236,237,275,280-284 

In order to delineate a strategy towards predicting the self-organization of 

molecular building units into 1D, 2D or 3D networks that would possess a sufficient 

degree of robustness to sustain guest- free cavity, an in-depth study of the relationship 

between the specifics of such structures, strength and dimensionality of the network 

connections or potential for interpenetration, and their thermal and dynamic properties is 

of profound importance. Generally, most stable networks upon guest removal are 3D 

coordination networks, but 2D, 1D and even 0D topologies have also been reported to 

enable non-covalent interactions via hydrogen bonds, aromatic stacking or van der Waals 
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forces and generate relatively thermally stable porous networks.64,285-288 The investigation 

of the stability of porous materials upon guest removal requires the use of experimental 

techniques that will provide structural information in addition to visual examination, 

gravimetric and thermal data of the apohost formed after desorption of the guest 

molecules. In this context, X-ray powder and single crystal diffraction represent the most 

appropriate tools for such studies. In effect, the diffraction pattern is representative of the 

crystalline structure of a given metal-organic network and can serve to identify the 

substance and hence to determine the structural integrity of the network after desorption 

and/or readsorption of its guest molecules. In this regard, the broadening of diffraction 

pattern constitutes a common feature observed upon guest removal due to the degradation 

of the long-range order that usually corresponds to the presence of crystalline 

imperfections within the apohost structure. In such cases, the network may be retained 

and, when reimmersed in a solution or in contact with a gas containing guest molecules, 

the initial pattern is restored, although the qualification of the material as porous may be 

inadequate since the possibility of recrystallization remains. The guest molecules can, in 

some instances, be directly exchanged without prior removal of the original guest species, 

but without information concerning the retention of structural features that indicate the 

conservation of the apohost topology; the corresponding supramolecular networks cannot 

yet be designated as porous materials. Finally, there have been recent examples of 

flexible structures based upon hydrogen bonds or containing conformationally labile 

components that undergo reversible structural change upon their transition from host-

guest to apohost.260,289 Their single- or micro-crystallinity was maintained demonstrating 
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their propriety of adjustability in response to external change. This so-called “sponge-

like” behavior within the solid state may be a valuable feature for a new class of flexible 

porous materials. Figure 4.6 shows a significant example of such porous 2D metal-

organic bilayer. 

 

Figure 4.6. Sponge-like behavior of the metal-organic bilayer structure Ni2L3(BTC)4
260 upon 

desolvatation and variation of the corresponding torsion angles of the flexible parts. 

4.2.2. Classification of porous supramolecular metal-organic networks 

Considering the numerous examples of porous supramolecular metal-organic 

networks that have been reported to date and the diversity in terms concerning the 

description of their sorption properties, their classification according to the stability and 

dynamic of these materials with respect to their response to guest desorption resulting in 

different types of micro- or nano-porosity properties is valuable.284 In effect, it is 

important to distinguish non-porous structures that collapse upon guest removal from 

porous ones, which sustain empty cavities. However, it became evident from significant 

recent examples that such an organization can also be refined in order to take into 

account the fundamental changes that are associated with the host-guest/apohost 

transition. Along with the latest technological advances that render possible the 

determination of larger and more complex structures, it is now possible to obtain a 

precise knowledge of the structural evolution of porous networks. For example, the 
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structural elucidation of apohost networks via single-crystal or powder diffraction has 

evidenced the variation of structural parameters resulting from guest desorption. In this 

context, a classification of porous supramolecular metal-organic networks that retain 

single-crystallinity upon guest removal can reveal distinct features that are associated 

with the structures according to the preservation of chemical or structural integrity during 

the desorption process, Table 4.3. In a broader perspective, it should be noted that usual 

techniques utilized to characterize the porosity of metal-organic networks reported in the 

literature are sufficient. Nevertheless, in specific cases such as these presented in Table 

4.3, when the structures present some degree of flexibility that generates more or less 

critical changes in the apohost network, an extensive study of these structural or chemical 

modifications may be of interest for potential applications (e.g. size/shape/function 

selectivity of the empty cavities for adsorbents or sensing devices, presence of active sites 

on uncoordinated metal centers for catalysis…). As a sideline, the retention of single-

crystallinity after physical or chemical alteration of such porous compounds may be 

important for certain type of device applications.
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Table 4.3. Classification of porous supramolecular metal-organic networks according to their behavior upon guest desorption/readsorption 

* L1 = 4,4’-bis(4-pyridyl)biphenyl, L2 = 2,4’-(1,4-phenylene)bispyridine, L3 = 1,1,1-trifluoro-5,5-dimethyl-5-methoxyacetylacetone, L4 = bis(3-
aminopropyl)methylamine, L5 = C26H52N10 bismacrocycle, L6 = 2,4,6-tris(4-pyridil)triazine, 

 Dim Network Formula Guest Description of change s associated with host-guest/apohost transition Ref. 
1D Ladder Ni2(4,4'- bipy)3(NO3)4 MeOH Lattice parameter b reduced by 0.53(9)% upon desorption (120ºC)  

Reversibility - Function selective readsorption 
290 

2D Bilayer Ni2(4,4'-bipy)3(NO3)4 EtOH Less than 2.3% changes in cell dimensions upon desorption (100ºC) - Reversibility 291 
3D Spiral net Cu(Isonicotinate)2 H2O Less than 0.2% changes in cell dimensions upon desorption (140ºC) - Reversibility - 

Expension (up to 8% vol) upon readsorption of propanol - Size selective readsorption 

238 

3D Distorted diamondoid net Co2(H2O)(Nicotinate)4 EtOH+
H2O 

Less than 0.2% changes in cell dimensions upon desorption (vacuum) – Reversibility 
No selectivity observed for readsorption capability 

215 

3D Cubic net Zn4O(1,4-BDC)3 DMF+ 
PhCl 

Less than 0.9% changes in cell dimensions upon desorption (300ºC) 
Reversibility 

292 

3D Octahedral net Cu(4,4'-bipy)2(SiF6) H2O Identical cell parameters of partially desolvated crystals - Reversibility 113,119 
2D Square grid NiL1

2(NO3)2
* o-

xylene 
Less than 0.5% changes in cell dimensions upon desorption (150ºC under vacuum) - No 
study on reversibility 

103 

3D Pillared rhombus grids Cu(Isonicotinate)2 EtOH Partial desorption at room temperature (sof 0.53 for EtOH molecules) 
No study on reversibility 

218 

N
o 

St
ru

ct
ra

l C
ha
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e 

3D Helical array Cd2L2 2(NO3)4
* Free L2 Less than 3.0% changes in cell dimensions upon desorption (reflux in toluene 

solubilizing free L2) - No study on reversibility 
293 

0D Packing forming 
hexagonal channels 

[CuL3
2]*2/3(CH2Cl2)* H2O Space group changes from Cmc21 to R-3 upon desorption (vacuum) 

Reversibility 

294 

0D Packing via H-bonds 
forming channels 

[Co(H2O)6]H2(TC-TTF) H2O Space group changes from P-1 to P112/m upon desorption  
Reversibility – Size/Function selective readsorption 

289 

1D 3D assembly of chains 
via  H bonds 

Cu2L4
2Ni(CN)4(ClO4)2

* H2O Space group changes from P21/m to P21/c upon desorption (100ºC)  
Reversibility – Size/Function selective readsorption 

295 

2D Bilayer Ni2L5
3(BTC)4

* Pyr+ 
H2O 

Space group changes from P-1 to P1 upon desorption (75ºC)  
Reversibility 

260 

2D Rhombus grid 
2-fold interpenetration 

Fe2(4,4’-azpy)4(NCS)4 EtOH Space group changes from C2/c to Ibam upon desorption (102ºC)  
Reversibility – Spin crossover switched upon transition 

125 

3D (10,3)-b net 
2-fold interpenetration 

(ZnI2)3L6
2
* PhNO2 Space group changes from C2/c to P-1 upon desorption (170ºC)  

Reversibility 
296 

Sr
uc

tu
ra

l C
ha

ng
e 

0D Assembly of complexes 
in chains 

(tBuSalcam)MnCl CH2Cl2 Lattice parameter b reduced from 49 to 15 Å upon desorption (with drastic 
conformational changes) - No study on reversibility 

297 

C
he

m
ic

al
 

C
ha

ng
e 3D PtS net (decorated) Cu2(ATC) H2O Space group changes from C2/c to P42/mmc upon removal of coord. and uncoord. water 

Reversibility – Increased antiferromagnetic coupling upon desorption 

298 
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4.2.3. Properties and applications 

Although porous metal-organic networks do not compare to zeolite materials in 

terms of robustness or thermal stability, their inherent modularity allows specific 

functionalization to provide desirable properties. In effect, the presence of metal centers 

affords the potential for a variety of redox, acid-base or magnetic properties; the use of 

asymmetric organic ligands can generate chirality or non- linear optical properties within 

the resulting supramolecular networks. The overall topology may be fine-tuned in terms 

of size and shape of the cavities and create specific host-guest interactions. As a result, 

these materials present various potential applications as adsorbents,299 sensors,300 

catalysts66 or in separation301 and ion exchange.113 

Among the porous coordination compounds mentioned above, few examples are 

known of structures that contain a flexible component, comparatively to their rigid 

counter-parts, because such a lack of rigidity leads to a higher degree of difficulty in 

terms of designing such materials. However, the rational utilization of non-rigid building 

units based upon the strategic principles presented above can provide a range of 

supramolecular metal-organic networks and extend their potential applications to the 

development of highly tunable hybrid materials that will possess properties related to the 

characteristics of their molecular components such as the possible ability of adaptation of 

such materials to their surrounding chemical environment. 
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4.3. Experimental 

4.3.1. Materials and Methods 

General methods, instruments and software suites have been described in Chapter 

3, Section 3.3.1. FT-IR spectra of all compounds are presented in appendices C6-C11. 

The crystals of all compounds were shown to be representative of the bulk by comparison 

of the x-ray powder diffraction pattern of fresh samples with the corresponding pattern 

calculated from the crystal structures. All XRPD patterns can be found in appendices C6-

C11. Thermogravimetric analysis was performed in air for readsorption monitoring on 

TA Instruments TGA 2950 Hi-Res. For guest readsorption experiments, the solvents used 

were HPLC grade (H2O = 0.009%) and the concentration changes were measured on a 

Shimadzu GC-17A gas chromatograph with flame ionization detector (GC-FID) using 

toluene as the internal standard. The data were fitted to the equation previously published 

by K. S. Min and M. P. Suh.301 

4.3.2. Syntheses  

Synthesis of {[Cu2(glutarate)2(dimethylformamide)2]}n, 18 

A solution of Cu(NO3)2·2.5H2O (0.233 g, 1.00 mmol), glutaric acid (0.264 g, 2.00 

mmol) and dimethylformamide (4.72 g, 64.6 mmol) dissolved in 15 ml methanol was 

stirred briefly before heating to ca. 80°C for 2 hours. The clear blue solution was left 

undisturbed at room temperature. Green-blue crystals of 18 (0.230 g, 0.431 mmol, 

86.2%), suitable for X-ray studies, appeared after 2 weeks.  
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Synthesis of {[Cu2(adipate)2(pyridine)2]}n, 19 

According to an analogous method as the synthesis of 18, the reaction of 

Cu(NO3)2·2.5H2O (0.233 g, 1.00 mmol), adipic acid (0.292 g, 2.00 mmol), pyridine 

(0.316 g, 3.99 mmol) in 20 ml methanol gave green crystals of 19 (0.138 g, 0.241 mmol, 

48.2%) after 48h. 

Synthesis of {[Cu2(glutarate)2(pyridine)2]}n, 20 

In a solution of Cu(NO3)2·2.5H2O (0.233 g, 1.00 mmol), glutaric acid (0.264 g, 

2.00 mmol) and pyridine (0.158 g, 2.00 mmol) dissolved in 30 ml methanol, green 

crystals of 20 (0.268 g, 0.491 mmol, 98.2%), suitable for X-ray studies, appeared after 

24h. 

Synthesis of {[Cu2(glutarate)2(4,4’-bipyridine)]·3H2O]}n, 21302 

Compound 21 forms via reaction of Cu(NO3)2·2.5H2O (1.165 g, 5.009 mmol), 

glutaric acid (1.982 g, 15.00 mmol) and 4,4’-bipyridine, bipy, (0.390 g, 2.50 mmol) in 

water. The initial product formed, as characterized by x-ray powder diffraction of the 

light blue powder obtained during the synthesis of 21, was found to be isostructural with 

ML1.5 ladder269 compound. The initial product was converted to green crystals of 21 by 

heating the reaction mixtures at ca. 80ºC for several hours. Yield of 1.392g (2.353 mmol, 

93.95%) was obtained; excess glutaric acid was recycled by filtration of the supernatant 

solution and recrystallization. 

Synthesis of {[Cu2(glutarate)2(1,2-bis(4-pyridyl)ethane)]·5H2O]}n, 22302 

Green crystals of 22, were obtained in a similar manner as those of compound 21 
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with 1,2-bis(4-pyridyl)ethane, bipyethane, (0.460 g, 2.52 mmol) instead of bipy with a 

yield of 1.615g (2.479 mmol, 98.98%). The initial product formed, as characterized by 

single crystal unit cell determination of the dark blue crystals obtained during the 

synthesis of 22 (Monoclinic, C2/c, a = 25.21, b = 9.19, c = 19.75 Å, ß = 94.98 deg, 

volume = 4548 Å3) and x-ray powder diffraction, was found to be isostructural with 

ML1.5 bilayer208 compound. 

Synthesis of {[Cu2(adipate)2(1,2-bis(4-pyridyl)ethane)]·1H2O·1CH3OH]}n, 23 

A solution of adipic acid (0.146 g, 1.00 mmol), NaOH (0.0800 g, 2.00 mmol), 

bipyethane (0.0921 g, 0.500 mmol) in 25 ml methanol was carefully layered onto a 

solution of Cu(NO3)2·2.5H2O (0.233 g, 1.00 mmol) in 10 ml water. An initial product 

formed, as a blue powder, was characterized by x-ray powder diffraction to be 

isostructural with ML1.5 bilayer208 compound and was converted to green crystals of 23 

after one week. Yield of 0.180 g (0.260 mmol, 51.9%) was obtained. 

4.3.3. Guest sorption studies 

Crystals of 18-23 were observed to retain their single crystallinity when removed 

from the mother liquor. Thermogravimetric analysis of 21a revealed that it is stable up to 

300ºC with loss of ca. 8.5% mass between 60 and 120ºC, consistent with desorption of 

water molecules (calculated 9%). Interestingly, when heated at 150ºC for 3 days, crystals 

of 21a were observed to remain crystalline and the crystal structure of the apohost, 21b, 

confirmed that removal of guest molecules does not influence the 3D network. IR, 

thermal analysis and GC experiments were used to confirm that 21b can readsorb water 
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molecules under various conditions to generate 21c. The 3 compounds 21a, 21b and 21c 

have been characterized by X-ray single crystallography. 22a was observed to desorb its 

guest water molecules following exposure to the atmosphere for ca. 1 hour. The resulting 

apohost 22b retained single crystallinity and was observed to adsorb water molecules via 

immersion in water. The resulting crystals, 22c, were confirmed to be isostructural to 

22a.  

4.3.4. X-ray Crystallography 

In the crystal structures of 18-23, all non-hydrogen atoms were refined with 

anisotropic displacement parameters except for the oxygen atoms of solvent in 22c. The 

H atoms of the C-H groups were fixed in calculated positions except for the carbon atom 

of methanol solvent in 23. The 2 molecules of solvents water and methanol in 23 were 

observed to exhibit high thermal motion. The two molecules of water in the asymmetric 

unit of 21a lie at general and special positions, thereby affording the reported 1:3 

stoichiometry. The water molecules of 21c were disordered over several positions and 

were refined with fixed site occupation factors (s.o.f.). In 22, the oxygen atoms of the 

solvent were disordered over several general positions (8 for 22a, 5 for 22b and 9 for 

22c) and refined with fixed s.o.f. for total of occupancies of 2.5, 1 and 2.5 respectively. 

These correspond to 1:5, 1:2 and 1:5 stoichiometries since the tetracarboxylate moities lie 

around special positions. Full crystallographic data can be found in the electronic 

supplementary data. Crystal data and structure refinement parameters of compound 18-23 

are presented in Table 4.4.
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Table 4.4. Crystallographic data for compounds 18-23 
Compound 18 19 20 21a 21b 21c 
Chemical formula C16H26Cu2N2O10 C22H26Cu2 N2O8 C20H22Cu2N2O8 C20H26Cu2N2O11 C20H20Cu2N2O8 C20H20Cu2N2O11 
Formula weight 533.47 573.53 545.48 597.51 543.46 591.46 
Temperature, K 293(2) 293(2) 100(2) 100(2) 100(2) 100(2) 
Crystal system Monoclinic Triclinic Orthorhombic Monoclinic Monoclinic Monoclinic 
Space group P2(1)/c P-1 Pbca C2/c C2/c C2/c 
a, Å 9.0201(12) 8.1820(19) 13.1322(12) 21.191(2) 21.011(2) 21.351(2) 
b, Å 7.8902(10) 8.6312(19) 8.4963(8) 13.1900(13) 13.0520(14) 13.1381(13) 
c, Å 14.9020(19) 9.245(2) 18.8964(18) 8.5212(9) 8.5284(9) 8.5699(9) 
a, deg 90 107.860(4) 90 90 90 90 
ß, deg 106.012(2) 106.494(4) 90 100.314(2) 100.679(2) 101.007(2) 
γ, deg 90 100.433(4) 90 90 90 90 
V, Å3 1019.4(2) 569.5(2) 2108.4(3) 2343.3(4) 2298.3(4) 2359.8(4) 
Z 2 1 4 4 4 4 
ρcalcd, g.cm-3 1.738 1.672 1.718 1.694 1.571 1.665 
µ, mm-1 2.143 1.919 2.069 1.878 1.897 1.864 
F(000) 548 294 1112 1224 1104 1200 
Crystal size, mm 0.08x 0.07x0.02 0.02x0.02x0.02 0.07x0.05x0.02 0.08x0.08x0.08 0.08x0.08x0.08 0.08x0.08x0.08 
θ range for data collection, deg 2.35 to 25.02 2.48 to 25.03 2.16 to 28.32 1.83 to 27.48 1.85 to 27.14 1.83 to 27.12 

Limiting indices 
-10<=h<=10 
-9<=k<=8 
-17<=l<=14 

-9<=h<=5 
-10<=k<=10 
-10<=l<=10 

-15<=h<=17 
-11<=k<=11 
-24<=l<=19 

-19<=h<=27 
-17<=k<=14 
-11<=l<=10 

-26<=h<=21 
-15<=k<=16 
-10<=l<=10 

-27<=h<=27 
-9<=k<=16 
-10<=l<=10 

Reflections collected 5225 3027 12708 7149 7048 6920 
Unique reflections 1798 1987 2549 2670 2532 2582 
R(int) 0.0492 0.0649 0.0623 0.0322 0.0387 0.0304 
Completeness to θ, % 99.9 98.4 97.0 99.4 99.6 99.3 
Absorption correction SADABS SADABS SADABS SADABS SADABS SADABS 
Max. and min. transmission 1.000 and 0.820 1.000 and 0.777 1.000 and 0.848 1.000 and 0.843 1.000 and 0.861 1.000 and 0.806 
Data / restraints / parameters 1798 / 0 / 138 1987 / 0 / 154 2549 / 0 / 145 2670 / 4 / 159 2532 / 0 / 147 2582 / 0 / 182 
Goodness-of-fit on F2 1.055 1.023 1.063 1.046 1.038 1.094 

Final R indices [I>2sigma(I)] 
R1 = 0.0349, 
wR2 = 0.0866 

R1 = 0.0642, 
wR2 = 0.1220 

R1 = 0.0452, 
wR2 = 0.0885 

R1 = 0.0376, 
wR2 = 0.0921 

R1 = 0.0342, 
wR2 = 0.0859 

R1 = 0.0380, 
wR2 = 0.1071 

R indices (all data) 
R1 = 0.0397, 
wR2 = 0.0892 

R1 = 0.0941, 
wR2 = 0.1357 

R1 = 0.0632, 
wR2 = 0.0956 

R1 = 0.0452, 
wR2 = 0.0963 

R1 = 0.0431, 
wR2 = 0.0904 

R1 = 0.0465, 
wR2 = 0.1112 

Largest diff. peak and hole, e.Å -3 0.420 and -0.345 0.826 and -0.631 0.471 and -0.510 0.946 and -0.575 0.533 and -0.416 0.628 and -0.328 
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Table 4.4. (continued) 
Compound 22a 22b 22c 23 
Chemical formula C22H24Cu2N2O13 C22H24Cu2N2O10 C22H24Cu2N2O13 C26H28Cu2N2O12 
Formula weight 651.51 603.51 651.51 687.58 
Temperature, K 100(2) 100(2) 100(2) 100(2) 
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 
Space group C2/c C2/c C2/c C2/c 
a, Å 24.238(2) 24.047(8) 23.911(3) 24.808(6) 
b, Å 13.0527(13) 11.784(4) 11.8685(15) 12.827(3) 
c, Å 8.6313(8) 9.059(3) 9.2063(12) 9.031(2) 
a, deg 90 90 90 90 
ß, deg 91.473(2) 91.044(6) 90.350(2) 93.368(5) 
γ, deg 90 90 90 90 
V, Å3 2729.8(5) 2566.4(14) 2612.5(6) 2868.7(12) 
Z 4 4 4 4 
ρcalcd, g.cm-3 1.585 1.562 1.656 1.592 
µ, mm-1 1.625 1.713 1.698 1.549 
F(000) 1328 1232 1328 1408 
Crystal size, mm 0.15x0.07x0.05 0.10x0.02x0.02 0.07x0.05x0.02 0.07x0.05x0.05 
θ range for data collection, deg 1.68 to 27.48 1.69 to 25.07 1.70 to 24.99 1.64 to 25.00 

Limiting indices 
-30<=h<=30 
-16<=k<=11 
-10<=l<=11 

-28<=h<=28 
-13<=k<=13 
-10<=l<=9 

-28<=h<=28 
-14<=k<=13 
-10<=l<=9 

-28<=h<=29 
-4<=k<=15 
-9<=l<=8 

Reflections collected 8295 6194 6627 3378 
Unique reflections 3082 2257 2292 2145 
R(int) 0.0286 0.0949 0.0479 0.0413 
Completeness to θ, % 98.4 98.8 99.4 84.5 
Absorption correction SADABS SADABS SADABS SADABS 
Max. and min. transmission 1.000 and 0.858 1.000 and 0.473 1.000 and 0.815 1.000 and 0.751 
Data / restraints / parameters 3082 / 0 / 222 2257 / 0 / 186 2292 / 0 / 187 2145 / 0 / 190 
Goodness-of-fit on F2 1.049 1.083 1.022 1.037 

Final R indices [I>2sigma(I)] 
R1 = 0.0410, 
wR2 = 0.0941 

R1 = 0.0741, 
wR2 = 0.1487 

R1 = 0.0402, 
wR2 = 0.0885 

R1 = 0.0630, 
wR2 = 0.1553 

R indices (all data) 
R1 = 0.0484, 
wR2 = 0.0972 

R1 = 0.1139, 
wR2 = 0.1618 

R1 = 0.0558, 
wR2 = 0.0948 

R1 = 0.0920, 
wR2 = 0.1740 

Largest diff. peak and hole, e.Å -3 0.594 and -0.417 0.873 and -0.725 0.525 and -0.476 0.899 and -0.524 
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4.4. Results and Discussion 

4.4.1. 1D structures 

The structure of compound 18 is based on dimetal tetracarboxylates building units 

bridged by two pairs of glutarate ligands, where the four flexible linkers adopt a syn 

configuration with each other around the bimetallic node, forming an arrangement in 

double chains of [Cu2(glutarate)2]n along the y-axis, Figure 4.7. The center of each 

dicopper tetracarboxylate chromophore lies on an inversion center, which generates two 

crystallographically equivalent Cu2+ ions separated by 2.61 Å that are additionally 

coordinated at their axial positions to the oxygen atoms of two DMF solvent molecules. 

The individual double chains align in layers parallel to [001] sustained by weak hydrogen 

bonds between the methyl groups of the DMF ligands of one 1D array and the 

coordinated oxygen atoms of the glutarate ligands of the adjacent double chains (d(C···O) 

= 3.67 Å), Figure 4.8a. The layers are aligned antiparallel with respect to the orientation 

of the axial ligand DMF and each layer is slipped with respect to the layer beneath along 

the y-direction by b/2 = 3.95 Å, Figure 4.8b. In the z-direction the 3D packing is 

facilitated by weak interactions between the methylene groups of the glutarate ligands 

and the oxygen of the coordinated carboxylate moieties of adjacent double-chains via 

hydrogen bonds with (d(C···O) = 3.65 to 3.67 Å). The glutarate ligands adopt the anti-

gauche mode with torsion angles of 175º and 57º and the orientation of the carboxylate 

moieties with respect to the backbone generates dihedral angles of ca. 43º and 37º. 
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Figure 4.7. Detailed view of the 1D double chain of [Cu2(glutarate)2(DMF)2]n  formed by compound 
18 down [001], (a) and [100] (b) 

  

 
Figure 4.8. Crystal packing of the 1D nets of compound 18 down [001] (a) and [100] (b) 

Compound 19 crystallizes in the space group P-1 and forms a similar 1D topology 

as described in compound 18 with pyridine molecules instead of DMF as the axial 

ligands of the dicopper tetraadipate chromophore, Figure 4.9. The 2D systems of adjacent 

double chains parallel to [001] allow p-p face-to-face interactions between the pyridine 

ligands of adjacent layers (d(C···C) = 3.31 to 3.53 Å), all layers are parallel and present 

the same orientation relative to the pyridine ligands. Figure 4.10 shows a representation 

of the crystal packing of the structure of 19 parallel to [001] and [110]. In 19 the 

conformation of the adipate ligands corresponds to the anti-gauche-gauche mode with 
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torsion angles of 170º, 67º and 65º and the orientation of the carboxylate moieties with 

respect to the backbone generates dihedral angles of ca. 36º and 31º, Figure 4.9. 

Interestingly, a related 1D network based upon dicopper tetraadipate, where cyclohexanol 

molecules act as the axial ligands has been reported in a structure that contains analogous 

double chains stacking between 2D sheets based upon the same metal-organic building 

blocks, Figure 4.11. In the double chain of [Cu(adipate)(C6H11OH)]n, the dihedral angles 

adopted by the adipate ligand in the anti-anti-gauche mode are 176º, 170º and 68º (Table 

4.2, CSD code MITHUS).276 

 

Figure 4.9. Detailed view of the 1D double chain of Cu2(adipate)2(pyridine)2 formed by compound 19 
down [100] (a) and [001] (b) 

 
Figure 4.10. Crystal packing of the 1D nets of 19 down [100] (a) and [110] (b), hydrogen atoms are 

omitted for clarity 

The two novel compounds 18 and 19 based upon a 4-connected node and flexible 
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links glutarate and adipate, in constrained conformations anti-gauche, anti-anti-gauche 

and anti-gauche-gauche, have afforded the 1D, double chain, topology resulting from the 

C2? symmetry of the angled ligands with respect to the dimetal axis. 

In the alternative case of all flexible linkers adopting a C4? symmetry around the 

bimetallic node, the 2D topology is expected, Figure 4.5. 

 
Figure 4.11. Crystal structure of [Cu3(adipate)3(H2O)2(C6H11OH)]n

276 (a) showing the 1D double 
chain of [Cu(adipate)(C6H11OH)]n (b) and the 2D sheets of [Cu2(adipate)2(H2O)2]n (c), hydrogen 

atoms are omitted for clarity 

4.4.2. 2D structures 

Compound 20 consis ts of corrugated sheets of metal-glutarate moieties parallel to 

[001], Figure 4.12a. The glutarate backbone possesses an anti-gauche conformational 

mode with torsion angles of 174º and 56º and a relative orientation of the carboxylate 

moieties with respect to the backbone of ca. 42º and 35º, Figure 4.12a. The axial pyridine 

ligands of a same 2D sheet interact via p-p face-to-face stacking (d(C···C) = 3.53 to 3.58 

Å) while there is no evidence of strong interaction between two adjacent 2D networks. 
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The 3D arrangement results from the piling of antiparallel sheets where pyridine 

molecules are filling of the voids generated by adjacent corrugated sheets, Figure 4.12b-

c. The topology of the 2D network in the structure of 20 can be described as a distorted 

rhombus grid, or 44 network, comparable to the 2D metal-organic network 

[Cu2(adipate)2(H2O)2]n represented in Figure 4.11c. Attempts to incorporate various guest 

molecules during crystallization of 20 were unsuccessful (benzene, toluene, nitrobenzene 

and anisole) and resulted in the formation of 20. Attempts to adsorb these guests by direct 

contact with 20 were also unsuccessful. X-ray single crystal unit cell determination, FT-

IR spectra and X-ray powder diffraction patterns of the product obtained were identical to 

these of compound 20.  

 
Figure 4.12. Detailed view of the [Cu2(glutarate)2]n sheets down [001] (a), crystal structure of the 2D 

net of 20 down [010] (b) and [100] (c)  

The structure directing agents to the formation of a 1D double chain versus a 2D 

network based upon the same chromophore dicopper tetraadipate have been interpreted 

as resulting from the biphasic solvothermal synthesis leading to the generation of the 

double chain in the organic phase of cyclohexanol whereas the 2D sheets are present in 

the aqueous phase.276 We have herein obtained analogous 1D and 2D structures from 
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glutarate ligand in organic conditions. The formation of the double chain over the 2D 

network appears to be mainly dependant upon the temperature at which the reaction takes 

place. These results illustrate how subtle differences of the conditions (temperature, 

solvent, pH…) during crystallization influence which topology is generated. 

4.4.3. 3D structures  

As mentioned above, the use of glutarate and adipate anions in coordination to 

bimetallic building units is capable, in appropriate circumstances, of sustaining 2D 

sheets. We report herein how such 2D networks can be rationally extended by pillaring 

via the use of bifunctional N,N’-donor ligands to generate the modular 3D nets 

{[Cu2(L1)2L2]·G}n, L1 = glutarate, L2 = 4,4’-bipyridine (bipy), 21 (G = 3H2O, 21a, G = 0, 

21b, G = 3H2O, 21c), L1 = glutarate, L2 = 1,2-bis(4-pyridyl)ethane (bipyethane), 22 (G = 

5H2O, 22a, G = 2H2O, 22b, G = 5H2O, 22c) and L1 = adipate, L2 = 1,2-bis(4-

pyridyl)ethane (bipyethane), G = 1H2O·1CH3OH, 23. 

21a consists of corrugated sheets of metal-glutarate moieties parallel to [100], 

Figure 4.13a, that are pillared via axial coordination of canted bipy ligands, Figure 4.13b. 

The resulting 3D network contains channels with effective dimensions of ca. 2.9 Å X 4.0 

Å occupied by two crystallographically independent water molecules that form hydrogen 

bonded chains (d(O···O) = 2.81 and 2.97 Å) which interact with the methylene groups of 

the glutarate ligands (d(C···O) = 3.66-3.88 Å), Figure 4.13c. A similar 1D polymer of 

ordered water molecules was observed in a 3D hydrogen bonded ionic network that 

contains channels with the requisite size and environment. However, this structure does 

not survive desorption of the guest water molecules.303 The glutarate ligands adopt the 
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anti-gauche mode with torsion angles of 175º and 57º and the orientation of the 

carboxylate moiety with respect to the backbone generates dihedral angles of ca. 43º and 

37º, Figure 4.13a. The bridging bipy ligands connect the sheets in a criss-cross pattern 

that facilitates p-p face-to-face interactions (d(C···C) = 3.38 to 3.58 Å). Such a criss-

crossed network possesses a topology related to the a-polonium net, a topology that has 

also been generated via M(CN)2 sheets linked by pyrazine ligands.304  

 
Figure 4.13. Detailed view of the [Cu2(glutarate)2]n sheets down [100] in 21 (a), crystal structure of 
the 3D net of 21a down [001] (b) and corresponding space filling representation (d) and view of a 

channel of water molecules in 21a (c) 

Thermogravimetric analysis of 21a revealed that it is stable up to 300ºC with loss 

of ca. 8.5% mass between 60 and 120ºC, consistent with desorption of water molecules 

(calculated 9%). Interestingly, when heated at 150ºC for 3 days, crystals of 21a were 

a           c 
 
 
 
 
 
 
 
 
 
b           d 
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observed to remain crystalline and the crystal structure of the apohost, 21b, confirmed 

that removal of guest molecules does not influence the 3D network. IR and thermal 

analysis were used to confirm that 21b can adsorb water molecules under various 

conditions, Figures 4.14 and 4.15.  For example, under an atmosphere of ca. 60% water 

vapour, a powdered sample of 21b adsorbs water and reaches saturation after ca. 1 hour 

whereas single crystals of 21b take ca. 15 hours to reach saturation. The X-ray crystal 

structure of such a sample, 21c, revealed it to be crystallographically identical to 21a. 

Attempts to incorporate other guest molecules during crystallization of 21 were 

unsuccessful (methanol, hexanes, mixtures of water: methanol (1:1, 1:5 and 1:10), 

benzene, nitrobenzene or anisole) and resulted in the formation of 21a.  Attempts to 

adsorb other guests by direct contact with 21b were also unsuccessful (gas 

chromatographic experiments and infrared spectra indicated that methanol, ethanol, 

acetonitrile or n-hexane are not adsorbed under anhydrous conditions). 

 
Figure 4.14. FT-IR spectra of compound 21b let in atmosphere for 55min (from t = 0, top, to t = 

55min, bottom) 
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Figure 4.15. TGA traces of the rehydration of 21b crystals (a) and 21b powder (b) under ambient 

atmosphere 

The crystal structure of 22 is similar to that of 21 with differences due to the 

presence of the additional ethylene moieties, Figure 4.16. 22a contains channels with 

effective dimensions of ca. 3.5 Å X 4.4 Å occupied by 2.5 independent water molecules. 

The glutarate backbone possesses an anti-gauche conformation with torsion angles of 

173º and 60º and a relative orientation of the carboxylate moieties with respect to the 
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backbone of ca. 39º and 33º. The bipyethane ligands are canted and criss-cross between 

the dicopper tetraglutarate sheets. They engage in edge-to-face aromatic stacking 

interactions (d(C···C) = 3.54 to 4.11 Å) reinforced by CH2···CH2 interactions (d(C···C) = 

3.76 Å) and CH···p interactions (d(C···C) = 3.85 to 3.89 Å).  22a was observed to desorb 

its guest water molecules following exposure to the atmosphere for less than 1 hour. 

Figure 4.17 shows the FT-IR spectra of the same sample of 22a let in atmosphere for 45 

min and the regular decrease in intensity of the broad band centered at 3500 cm-1 

corresponding to the vibration of O-H bonds from the water guest molecules. The 

resulting apohost 22b retained single crystallinity and was observed to adsorb water 

molecules via immersion in water.  The resulting crystals, 22c, were confirmed to be 

isostructural to 22a. The slightly larger channels in 22a would therefore appear to result 

in lower affinity for water molecules when compared to 21a, which readily adsorbs from 

gas as well as liquid contact. 

 

Figure 4.16. Crystal structure of the 3D net of 22a down [001] (a) and corresponding space filling 
representation where the guest water molecules are omitted (b) 

a     b 
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Figure 4.17. FT-IR spectra of compound 22a let in atmosphere for 45min (from t = 0, top, to t = 

45min, bottom) 

The crystal structure of 23 is similar to that of 22 with differences due to the 

presence of the additional methylene moiety in the adipate ligand, Figure 4.18. 23 

contains channels with effective dimensions of ca. 3.1 Å X 4.3 Å occupied by disordered 

guest water and methanol molecules. The adipate backbone possesses an anti-gauche-

gauche conformation with torsion angles of 170º, 57º and 53º and a relative orientation of 

the carboxylate moieties with respect to the backbone of ca. 69º and 16º. The bipyethane 

ligands are canted and criss-cross between the dicopper tetraadipate sheets. They engage 

in edge-to-face aromatic stacking interactions (d(C···C) = 3.84 to 4.29 Å) reinforced by 

CH2···CH2 interactions (d(C···C) = 3.91 Å) and CH···p interactions (d(C···C) = 3.98 to 

4.02 Å).  23 was observed to readily desorb its guest molecules following exposure to the 

atmosphere for ca. 10 min. The apohost was observed to retain crystallinity but the 

quality of the resulting crystals was not sufficient to obtain an acceptable structure 

solution. The slight decrease in the dimensions of the channels in 23, as compared with 
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those of 22, is due to the presence of additional methylene groups of conformationally 

constrained adipate ligands, which, in return, render the cavities less hydrophilic than 21 

and 22. As a sideline, it should be mentioned that our attempt to prepare crystals of the 

corresponding network of [Cu2(adipate)2]n pillared by 4,4’-bipyridine ligands was 

unsuccessful. This is predictable since the shortening of aromatic linkers would generate 

destabilizing interactions between the adipate fragments contained in the channels and 

the 4,4’-bipyridine that criss-cross the dicopper tetraadipate sheets. 

Figure 4.18. Detailed view of the [Cu2(adipate)2]n sheets down [100] in 23 (a), crystal structure of the 
3D net of 23 down [001] (b) and corresponding space filling representation where the guest water 

molecules are omitted (c) 

The five compounds studied herein are representative of a relatively new class of 

metal-organic networks based upon the two conformationally flexible ligands glutarate 

and adipate. They have formed the two types of networks 1D double chains and 2D grids 

that can be rationalized on the basis of the conformation adopted by the organic linkers 

and the connectivity and geometry of the molecular building units. The 1D, double chain, 

topology resulted from axial coordination of neutral O-donor DMF ligand in 18 or N-

donor pyridine ligand in 19. The formation of corrugated sheets [Cu2(glutarate)2]n in the 

a     b         c 
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2D 44 network of 20 when pyridine molecules act as the two axial ligands has 

successfully generated extended modular 3D α-Po nets upon the utilization of the neutral 

difunctional axial N-coordinated ligand, the pillars being 4,4’-bipyridine, 21, and 1,2-

bis(4-pyridyl)ethane, 22 and 23. 

4.5. Conclusions  

In conclusion, it should be emphasized that compound 21 represents a novel 

porous network that was generated in water and acts as a highly selective adsorbent for 

water molecules. That 21 retains single crystallinity might be attributed to the stability of 

the 2D sheets and the ability of the cross-linking ligands to engage in stacking 

interactions. Compounds 21 and 22 are new members of a relatively small group of 

molecular materials that reversibly desorb guest molecules with retention of single 

crystallinity.113,125,215,236,238,260,289-291,294-296 In the context of porosity, it has been suggested 

that the generation of porous materials that retain crystallinity during reversible 

desorption and exhibit high selectivity towards guest molecules might be relevant as 

adsorbents for separations and sensing devices.305 

These results further confirm how the rational use of flexible linkers has allowed 

the generation of predicted crystal structures. Such investigations have provided design 

strategies that apply to systems containing an inherently high degree of flexibility and an 

understanding of the essential mechanisms that control the geometrical adaptability 

typical of this class of compounds. Applications of these principles may lead to the 

construction of metal-organic networks possessing important novel properties directly 

connected to the conformational flexibility of the building units. 
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In this regard, it is interesting to speculate that a further use of flexible linkers 

may be rationally used to construct materials that possess sufficient flexibility to allow 

for geometrical and/or functional recognition. An especially intriguing and exciting 

aspect of such protocol would consist in the possibility to combine flexibility and 

porosity within supramolecular metal-organic networks, which may potentially lead to 

cooperative substrate binding. In other words, the networks may function as “living” or 

“smart” hosts in a manner reminiscent of biological systems. 
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Chapter 5 

Conclusion and Future Directions  

 

5.1. Summary 

The generation and systematic study in terms of structures and properties of the 

metal-organic and organic systems presented in this dissertation have led to the 

development of strategies for understanding and controlling intermolecular interactions 

within the solid state. In particular, this research has contributed to the rationalization of 

self-assembly of a selection of calixarenes and metal-organic networks on the basis of 

supramolecular approaches towards the organization of individual molecular building 

units into desirable crystalline architectures. From the structural investigation of the novel 

supramolecular systems described throughout this thesis, three salient features deserve to 

be emphasized: 

- Structural control over the crystal packing of pseudo-amphiphilic 

calixarenes is possible, given the use of appropriate functionalization of the 

building units owing to the knowledge of the relative effects resulting from the 

combination of two or more sets of supramolecular interactions. In effect, it has 

been established that well-organized bilayer structures can be generated from 

subtle exploitation of the balance between halogen and van der Waals interactions 
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introduced at the opposite faces of calixarene building units. 

- New insights concerning structural diversity in supramolecular systems 

have resulted from the generation of three novel metal-organic networks based 

upon coordination between simple components that can afford different 

topologies according to their connectivity and geometry. Self-assembly of Zn(II), 

4-connected node, and nicotinate, ligand possessing N-donor and carboxylate 

functions, has afforded a 3D 42·84 and two 2D 44 networks, structural 

supramolecular isomers interconnected through subtle variation of crystallization 

conditions. Such results especially emphasize that the composition of a material is 

not the only parameter to be considered prior to the generation of infinite 

networks since rational topological approaches are critical towards their 

construction. 

- The use of organic ligands that contain conformationally labile fragments, 

glutarate and adipate, in metal-organic networks based upon the ubiquitous 

chromophore dicoppertetracarboxylate, has been investigated towards the 

generation of porous materials. In this context, the novel porous network 

[Cu2(glutarate)2(4,4’-bipyridine)]n has been shown to retain single-crystallinity 

upon reversible guest desorption and to act as a highly selective adsorbent for 

water molecules.  

In summary, this work has contributed to the rational design of metal-organic and 

organic systems that are applicable to the construction of a broader range of 

supramolecular materials. 
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5.2. Supramolecular Materials 

Metal-organic networks and organic assemblies presented herein represent 

prototypical examples pertaining to two areas of supramolecular chemistry that are 

differentiable by the type of intermolecular interactions involved. General approaches 

have been delineated from the structural investigation of individual building units and 

their modulation to afford functional sites or geometries that are suitable for specific 

organization between molecules within the solid state. In this regard, preselection of 

complementary nodes- linkers, metal centers and organic ligands, that can self-assemble 

into predictable topologies has successfully afforded novel supramolecular materials 

possessing interesting properties. On the other hand, judicious functionalization of a 

single type of component possessing typical morphology, as exemplified by the cone-

shaped calixarene molecules, has generated organic building units that possess adequate 

geometries and functions to self-assemble into predictable structures. 

In both cases, preselection of molecular building units, consisting of one or more 

components that possess molecular recognition potential, represents the key factor to 

control the resulting supramolecular architectures. In the current intense research in the 

field of nanosciences towards the controlled manipulation of molecules in order to build 

nanostructured materials, the use of supramolecular concepts providing enhanced insight 

into and control of how molecules interact and assemble, exemplified by the two types of 

supramolecular systems presented herein, represents a successful approach to design 

materials directly at the molecular level. 
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5.3. Future Directions  

Considering the inherent modularity of systems based upon molecular building 

units that can be systematically modified and adjusted, application of the supramolecular 

approach for the design of new materials can be applied to the construction of an even 

wider range of supramolecular systems.  

The modular nature of crystal engineered metal-organic networks, which can be 

generated from a diverse array of complementary building units and their structural 

diversity, represented by the range of supramolecular isomers that can be generated from 

each set of molecular components are of particular interest in the context of fine-tuning 

the chemical or physical properties. Investigation towards the variation of the metal 

centers may result in additional properties integrated to the networks and could offer 

materials possessing catalytical or optical properties. Further investigation towards 

functionalization of the organic ligands, in an extension to the parallel study of metal-

organic structures based upon nicotinate and dinicotinate ligands, may be of interest 

towards the generation of networks containing specific functions as reactive or binding 

sites at well-defined and controllable positions within the network topology. 

 Further use of aliphatic linkers possessing various chain lengths and 

functionalities should be fully developed. The goal in this regard would be the generation 

of flexible architectures with variable shapes and sizes, and should represent great 

potential for supramolecular chemistry. Another outcome from the use of this type of 

ligand is the expectation that the resulting structures may expand the concept of 

supramolecular isomerism to its conformational counterpart and provide a route to the 
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generation of a novel class of nanostructures possessing useful properties directely 

related to the conformational lability of the organic building units. 

Finally, in the current context of multi-disciplinary research, it should be 

interesting to expand the study of pseudo-amphiphilic calixarenes to other derivatives 

that would incorporate specific functionalities towards the generation of materials 

possessing additional properties. Such materials could offer opportunities to impact areas 

as diverse as material and surface sciences or physics. In addition, further study of 

inclusion properties of self-assembled bilayers generated from calixarenes may reveal 

significant with a view towards biomimetics since these artificial and controllable 

systems could possess similar properties as those of biological membranes. 

As a last note, it should be emphasized that technological advances in both 

software and hardware have rendered possible the determination of large complex 

structures. However, related methods for structural determination of micro- and nano-

crystalline materials may represent inestimable advantages with respect to the 

characterization of special classes of supramolecular materials, e.g. large structures 

possessing broad flexible regions inclined to induce high disorder, and the study of some 

of their properties, in a similar perspective as porosity can be characterized via single 

crystal structural determination. 
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Appendix A. AFM studies for compound 10. 
 
 

Non-contact mode AFM images of compound 10 on glass after annealing for 24 hours at 
37 °C and 25 °C (and corresponding zoom) representative of the variation in self-

organization of this compound at different temperatures 
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Appendix B. Histogram showing the distribution of Cu-O distances among the 
structures found in the CSD search of the chromophores of mononuclear Cu 4-, 5- 

and 6-coordinate containing two functionalities N-donor and carboxylate 
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Appendix C-1. Experimental data for compound 13 

FT-IR spectrum, TGA trace and X-ray powder diffraction patterns of fresh sample and 
calculated from the single crystal structure 
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Appendix C-2. Experimental data for compound 14 

FT-IR spectrum, TGA trace and X-ray powder diffraction patterns of fresh sample and 
calculated from the single crystal structure 
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Appendix C-3. Experimental data for compound 15 

FT-IR spectrum, TGA trace and X-ray powder diffraction patterns of fresh sample and 
calculated from the single crystal structure 

 

 
 

 

 



www.manaraa.com

 156 

Appendix C-4. Experimental data for compound 16 

FT-IR spectrum and TGA traces (after several minutes and one hour of exposure to 
atmosphere) 
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Appendix C-4. (continued) 

X-ray powder diffraction patterns of fresh sample and calculated from the single crystal 
structure 
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Appendix C-5. Experimental data for compound 17 

FT-IR spectrum and X-ray powder diffraction patterns of fresh sample and calculated 
from the single crystal structure 
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Appendix C-6. Experimental data for compound 18 

FT-IR spectrum and X-ray powder diffraction patterns of fresh sample and calculated 
from the single crystal structure 

 

 
 

 
 

 



www.manaraa.com

 160 

Appendix C-7. Experimental data for compound 19 

FT-IR spectrum and X-ray powder diffraction patterns of fresh sample and calculated 
from the single crystal structure 
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Appendix C-8. Experimental data for compound 20 

FT-IR spectrum and X-ray powder diffraction patterns of fresh sample and calculated 
from the single crystal structure 
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Appendix C-9. Experimental data for compound 21 

FT-IR spectra of compounds 21a, 21b and 21b let in MeOH (HPLC grade H2O = 
0.009%) for 1 night 
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Appendix C-9. (continued) 

TGA traces of 21a and 21b let in atmosphere for <1hour 
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Appendix C-9. (continued) 

X-ray powder diffraction patterns of fresh sample and calculated from the single crystal 
structure for compounds 21a (left) and 21b (right) and inclusion of apohost solid 21b 

with various guests from GC experiments 

 
 

 
 
 

Guest G Guest (mol) included per 
unit formula of 1b 

MeOH 5.00.10-9 
EtOH 3.94.10-7 

CH3CN 6.70.10-7 

n-hexane 1.21.10-8 
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Appendix C-9. (continued) 

X-ray powder diffraction patterns of the blue powder formed during the synthesis of 21a 
and simulation from the structure of [Co(4,4’-bipyridine)1.5(NO3)2]n (CSD code 

REJVUX) 
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Appendix C-10. Experimental data for compound 22 

FT-IR spectra of compounds 22a, 22b and 22c 
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Appendix C-10. (continued) 

TGA traces of 22a, 22b and 22c 
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Appendix C-10. (continued) 

X-ray powder diffraction patterns of fresh sample and calculated from the single crystal 
structure 
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Appendix C-10. (continued) 

X-ray powder diffraction patterns of blue crystals formed during the synthesis of 22 and 
simulation from the structure of bilayer [Co(4,4’-bipyridine)1.5(NO3)2]n (CSD code 

NAMSEZ) 
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Appendix C-11. Experimental data for compound 23 

FT-IR spectrum and X-ray powder diffraction patterns of fresh sample and calculated 
from the single crystal structure 
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